Macroevolutionary integration of phenotypes within and across ant worker castes.

Nicholas R Friedman, Beatrice Lecroq Bennet, Georg Fischer, Eli M Sarnat, Jen-Pan Huang, L Lacey Knowles Knowles, Evan P Economo
Author Information
  1. Nicholas R Friedman: Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan. ORCID
  2. Beatrice Lecroq Bennet: Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan.
  3. Georg Fischer: Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan.
  4. Eli M Sarnat: Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan.
  5. Jen-Pan Huang: Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan Ann Arbor MI USA.
  6. L Lacey Knowles Knowles: Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan Ann Arbor MI USA. ORCID
  7. Evan P Economo: Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan.

Abstract

Phenotypic traits are often integrated into evolutionary modules: sets of organismal parts that evolve together. In social insect colonies, the concepts of integration and modularity apply to sets of traits both within and among functionally and phenotypically differentiated castes. On macroevolutionary timescales, patterns of integration and modularity within and across castes can be clues to the selective and ecological factors shaping their evolution and diversification. We develop a set of hypotheses describing contrasting patterns of worker integration and apply this framework in a broad (246 species) comparative analysis of major and minor worker evolution in the hyperdiverse ant genus . Using geometric morphometrics in a phylogenetic framework, we inferred fast and tightly integrated evolution of mesosoma shape between major and minor workers, but slower and more independent evolution of head shape between the two worker castes. Thus, workers are evolving as a mixture of intracaste and intercaste integration and rate heterogeneity. The decoupling of homologous traits across worker castes may represent an important process facilitating the rise of social complexity.

Keywords

Associated Data

Dryad | 10.5061/dryad.gqnk98sjx

References

  1. Science. 2013 Jul 19;341(6143):292-5 [PMID: 23869019]
  2. Nat Commun. 2018 May 3;9(1):1778 [PMID: 29725049]
  3. Curr Biol. 2011 Sep 27;21(18):R738-49 [PMID: 21959164]
  4. J Evol Biol. 2009 May;22(5):1004-13 [PMID: 19243486]
  5. Evolution. 1982 May;36(3):499-516 [PMID: 28568050]
  6. Monogr Popul Biol. 1978;12:1-352 [PMID: 740003]
  7. Evolution. 2016 Nov;70(11):2623-2631 [PMID: 27592864]
  8. Science. 2018 Jul 27;361(6400):398-402 [PMID: 30049879]
  9. J Evol Biol. 2007 Nov;20(6):2334-48 [PMID: 17956395]
  10. Am Nat. 2012 Jul;180(1):E1-16 [PMID: 22673659]
  11. Evolution. 2016 Feb;70(2):433-44 [PMID: 26787369]
  12. Nature. 2018 Oct;562(7728):574-577 [PMID: 30305737]
  13. Nature. 1995 Mar 16;374(6519):227-32 [PMID: 7885442]
  14. Science. 2005 Feb 4;307(5710):718-20 [PMID: 15692049]
  15. Mol Phylogenet Evol. 2008 Jul;48(1):224-39 [PMID: 18394929]
  16. Evolution. 2016 Apr;70(4):903-12 [PMID: 26935139]
  17. J Exp Zool B Mol Dev Evol. 2011 Jul 15;316(5):313-8 [PMID: 21404423]
  18. Annu Rev Entomol. 2018 Jan 7;63:575-598 [PMID: 29068707]
  19. Curr Opin Insect Sci. 2017 Feb;19:43-51 [PMID: 28521942]
  20. PLoS One. 2012;7(2):e31618 [PMID: 22363686]
  21. Ecol Evol. 2020 Aug 18;10(17):9371-9383 [PMID: 32953067]
  22. Nat Commun. 2014 Apr 16;5:3700 [PMID: 24739280]
  23. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9394-7 [PMID: 12878720]
  24. Am Nat. 2006 Mar;167(3):390-400 [PMID: 16673347]
  25. Syst Biol. 2015 Jul;64(4):677-89 [PMID: 25841167]
  26. Proc Biol Sci. 2015 Jan 07;282(1798):20141416 [PMID: 25429013]
  27. PeerJ. 2013 Nov 05;1:e205 [PMID: 24255818]
  28. Syst Biol. 2018 Jan 01;67(1):14-31 [PMID: 28633306]
  29. Science. 1981 Jul 17;213(4505):361-3 [PMID: 17819911]
  30. Evolution. 2017 Feb;71(2):315-328 [PMID: 27859046]
  31. Mol Ecol. 2011 Jan;20(1):114-30 [PMID: 21059129]
  32. Cell. 2017 Aug 10;170(4):748-759.e12 [PMID: 28802044]
  33. Biol Rev Camb Philos Soc. 2001 May;76(2):211-37 [PMID: 11396847]
  34. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8661-8 [PMID: 17494751]
  35. Syst Biol. 2013 Jul;62(4):591-610 [PMID: 23589497]
  36. Elife. 2014;3:e01539 [PMID: 24399458]
  37. Biol Rev Camb Philos Soc. 1966 Nov;41(4):587-640 [PMID: 5342162]
  38. J Insect Sci. 2010;10:1 [PMID: 20569122]
  39. Evolution. 1996 Jun;50(3):967-976 [PMID: 28565291]
  40. Science. 2012 Jan 6;335(6064):79-82 [PMID: 22223805]
  41. Am Nat. 2012 Sep;180(3):328-41 [PMID: 22854076]
  42. Evolution. 2015 Sep;69(9):2425-40 [PMID: 26278586]
  43. Q Rev Biol. 1953 Jun;28(2):136-56 [PMID: 13074471]
  44. Evolution. 2011 Aug;65(8):2197-212 [PMID: 21790569]
  45. J Biogeogr. 2015 Dec;42(12):2289-2301 [PMID: 27660394]
  46. Am Nat. 2019 Jun;193(6):755-772 [PMID: 31094602]
  47. PLoS One. 2014 Apr 11;9(4):e94335 [PMID: 24728003]
  48. J Evol Biol. 2016 Nov;29(11):2111-2128 [PMID: 27471072]

Word Cloud

Created with Highcharts 10.0.0integrationcastesworkerevolutiontraitsmodularitywithinacrossintegratedsetssocialapplypatternsframeworkmajorminorantgeometricmorphometricsshapeworkersPhenotypicoftenevolutionarymodules:organismalpartsevolvetogetherinsectcoloniesconceptsamongfunctionallyphenotypicallydifferentiatedmacroevolutionarytimescalescancluesselectiveecologicalfactorsshapingdiversificationdevelopsethypothesesdescribingcontrastingbroad246speciescomparativeanalysishyperdiversegenusUsingphylogeneticinferredfasttightlymesosomaslowerindependentheadtwoThusevolvingmixtureintracasteintercasterateheterogeneitydecouplinghomologousmayrepresentimportantprocessfacilitatingrisecomplexityMacroevolutionaryphenotypesPheidoleantscastedimorphismmorphological

Similar Articles

Cited By