Accessing the Ene-Imine Motif in 1-Isoindole, Thienopyrrole, and Thienopyridine Building Blocks.

Brandon C Fillmore, Jayden Price, Ryan Dean, Amy A Brown, Andreas Decken, Sara Eisler
Author Information
  1. Brandon C Fillmore: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
  2. Jayden Price: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
  3. Ryan Dean: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
  4. Amy A Brown: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
  5. Andreas Decken: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
  6. Sara Eisler: Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.

Abstract

A pathway to a range of diverse heterocycles was developed using a nucleophilic cyclization strategy. Lactams and ene-imines are accessed in a few steps from a common precursor, and these moieties are further elaborated to directly provide pyrroles or pyridines with extended conjugation. Reaction conditions are mild, and a broad range of structural types are available within a few steps.

References

  1. J Org Chem. 2016 May 6;81(9):3761-70 [PMID: 27031115]
  2. Chem Sci. 2017 Jan 1;8(1):40-62 [PMID: 28451148]
  3. Org Lett. 2014 May 16;16(10):2642-5 [PMID: 24796375]
  4. J Am Chem Soc. 2016 Jan 13;138(1):173-85 [PMID: 26669732]
  5. Chem Commun (Camb). 2014 Jun 28;50(51):6797-800 [PMID: 24837646]
  6. Chemistry. 2017 Oct 20;23(59):14723-14727 [PMID: 28875516]
  7. Chemistry. 2017 May 5;23(26):6357-6369 [PMID: 28256758]
  8. J Org Chem. 2009 Nov 6;74(21):8106-17 [PMID: 19780573]
  9. J Org Chem. 2013 Mar 15;78(6):2579-88 [PMID: 23438089]
  10. Acc Chem Res. 2016 Jan 19;49(1):78-85 [PMID: 26693798]
  11. J Am Chem Soc. 2005 Sep 14;127(36):12583-94 [PMID: 16144406]
  12. Org Lett. 2011 Sep 16;13(18):4846-9 [PMID: 21859123]
  13. Chem Commun (Camb). 2015 Aug 4;51(60):12122-5 [PMID: 26122698]
  14. Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7688-91 [PMID: 22730219]
  15. J Org Chem. 2012 Feb 3;77(3):1572-8 [PMID: 22283558]
  16. Org Lett. 2017 Jun 16;19(12):3275-3278 [PMID: 28562059]
  17. J Org Chem. 2016 Jun 3;81(11):4797-806 [PMID: 27220261]
  18. Chem Sci. 2016 Nov 1;7(11):6701-6705 [PMID: 28451113]
  19. J Org Chem. 2009 Aug 21;74(16):6390-3 [PMID: 20560575]
  20. Org Lett. 2017 Apr 21;19(8):2110-2113 [PMID: 28397494]
  21. Dalton Trans. 2018 Oct 9;47(39):14094-14100 [PMID: 30246837]
  22. J Org Chem. 2011 Oct 21;76(20):8488-94 [PMID: 21902170]
  23. Org Lett. 2018 Dec 21;20(24):7869-7874 [PMID: 30511868]
  24. J Org Chem. 2017 Jul 7;82(13):7059-7064 [PMID: 28648076]
  25. Chemistry. 2013 Nov 25;19(48):16204-8 [PMID: 24173961]
  26. Org Lett. 2016 Aug 5;18(15):3610-3 [PMID: 27435354]
  27. J Org Chem. 2015 Jan 16;80(2):882-96 [PMID: 25489964]
  28. Chem Asian J. 2018 Feb 2;13(3):220-229 [PMID: 29219247]
  29. Chem Rev. 2017 Feb 22;117(4):2481-2516 [PMID: 27958722]
  30. J Org Chem. 2003 Nov 28;68(24):9513-6 [PMID: 14629185]
  31. Acc Chem Res. 2009 Feb 17;42(2):235-48 [PMID: 19061332]
  32. J Am Chem Soc. 2014 Aug 20;136(33):11578-81 [PMID: 25056482]
  33. J Org Chem. 2018 Feb 16;83(4):2382-2388 [PMID: 29333860]