Anti-Biofilm Activity of Cell-Free Supernatant of against .

Yeon Jin Kim, Hwan Hee Yu, Yeong Jin Park, Na-Kyoung Lee, Hyun-Dong Paik
Author Information
  1. Yeon Jin Kim: Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
  2. Hwan Hee Yu: Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
  3. Yeong Jin Park: Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
  4. Na-Kyoung Lee: Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
  5. Hyun-Dong Paik: Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.

Abstract

is one of the most common microorganisms and causes foodborne diseases. In particular, biofilm-forming is more resistant to antimicrobial agents and sanitizing treatments than planktonic cells. Therefore, this study aimed to investigate the anti-biofilm effects of cell-free supernatant (CFS) of isolated from cucumber compared to grapefruit seed extract (GSE). CFS and GSE inhibited and degraded biofilms. The adhesion ability, auto-aggregation, and exopolysaccharide production of CFS-treated , compared to those of the control, were significantly decreased. Moreover, biofilm-related gene expression was altered upon CFS treatment. Scanning electron microscopy images confirmed that CFS exerted anti-biofilm effects against . Therefore, these results suggest that S. cerevisiae CFS has anti-biofilm potential against strains.

Keywords

References

  1. J Dairy Sci. 2019 Dec;102(12):10845-10849 [PMID: 31629522]
  2. J Altern Complement Med. 2002 Jun;8(3):333-40 [PMID: 12165191]
  3. Microb Pathog. 2010 Jul-Aug;49(1-2):14-22 [PMID: 20298773]
  4. Infect Genet Evol. 2020 Jul;81:104262 [PMID: 32109606]
  5. Nutrients. 2010 Apr;2(4):449-73 [PMID: 22254033]
  6. J Glob Antimicrob Resist. 2020 Jun;21:445-451 [PMID: 31830536]
  7. Front Cell Infect Microbiol. 2018 Apr 24;8:120 [PMID: 29740541]
  8. J Microbiol Biotechnol. 2019 Aug 28;29(8):1177-1183 [PMID: 31370119]
  9. Food Res Int. 2020 Aug;134:109214 [PMID: 32517896]
  10. Food Sci Biotechnol. 2018 Aug 11;28(1):289-296 [PMID: 30815321]
  11. Food Sci Biotechnol. 2016 Apr 30;25(2):643-648 [PMID: 30263318]
  12. Microb Pathog. 2017 Sep;110:670-677 [PMID: 28478200]
  13. Microb Biotechnol. 2015 May;8(3):392-403 [PMID: 25154775]
  14. Microb Pathog. 2019 Feb;127:12-20 [PMID: 30496836]
  15. Front Bioeng Biotechnol. 2015 Dec 18;3:200 [PMID: 26734603]
  16. BMC Complement Altern Med. 2017 Jan 21;17(1):64 [PMID: 28109187]
  17. Food Sci Biotechnol. 2020 May 27;29(9):1241-1250 [PMID: 32802563]
  18. Microb Pathog. 2020 Dec;149:104286 [PMID: 32502632]
  19. Iran J Microbiol. 2019 Jun;11(3):246-254 [PMID: 31523409]
  20. Food Sci Biotechnol. 2018 Oct 30;28(3):633-639 [PMID: 31093420]
  21. J Antimicrob Chemother. 2008 Oct;62(4):751-7 [PMID: 18565974]
  22. J Food Sci. 2020 Jan;85(1):157-164 [PMID: 31909483]

MeSH Term

Anti-Bacterial Agents
Bacterial Adhesion
Biofilms
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Saccharomyces cerevisiae
Staphylococcus aureus

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0CFSanti-biofilmThereforeeffectscell-freesupernatantcomparedgrapefruitseedextractGSEcerevisiaeonecommonmicroorganismscausesfoodbornediseasesparticularbiofilm-formingresistantantimicrobialagentssanitizingtreatmentsplanktoniccellsstudyaimedinvestigateisolatedcucumberinhibiteddegradedbiofilmsadhesionabilityauto-aggregationexopolysaccharideproductionCFS-treatedcontrolsignificantlydecreasedMoreoverbiofilm-relatedgeneexpressionalteredupontreatmentScanningelectronmicroscopyimagesconfirmedexertedresultssuggestSpotentialstrainsAnti-BiofilmActivityCell-FreeSupernatantAnti-biofilmSaccharomycesStaphylococcusaureus

Similar Articles

Cited By