Strong Plasmon-Exciton Coupling in Ag Nanoparticle-Conjugated Polymer Core-Shell Hybrid Nanostructures.

Christopher E Petoukhoff, Keshav M Dani, Deirdre M O'Carroll
Author Information
  1. Christopher E Petoukhoff: Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan. ORCID
  2. Keshav M Dani: Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
  3. Deirdre M O'Carroll: Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA.

Abstract

Strong plasmon-exciton coupling between tightly-bound excitons in organic molecular semiconductors and surface plasmons in metal nanostructures has been studied extensively for a number of technical applications, including low-threshold lasing and room-temperature Bose-Einstein condensates. Typically, excitons with narrow resonances, such as -aggregates, are employed to achieve strong plasmon-exciton coupling. However, -aggregates have limited applications for optoelectronic devices compared with organic conjugated polymers. Here, using numerical and analytical calculations, we demonstrate that strong plasmon-exciton coupling can be achieved for Ag-conjugated polymer core-shell nanostructures, despite the broad spectral linewidth of conjugated polymers. We show that strong plasmon-exciton coupling can be achieved through the use of thick shells, large oscillator strengths, and multiple vibronic resonances characteristic of typical conjugated polymers, and that Rabi splitting energies of over 1000 meV can be obtained using realistic material dispersive relative permittivity parameters. The results presented herein give insight into the mechanisms of plasmon-exciton coupling when broadband excitonic materials featuring strong vibrational-electronic coupling are employed and are relevant to organic optoelectronic devices and hybrid metal-organic photonic nanostructures.

Keywords

References

  1. ACS Nano. 2011 Sep 27;5(9):6880-5 [PMID: 21851108]
  2. Phys Rev Lett. 2011 May 13;106(19):196405 [PMID: 21668181]
  3. Nat Commun. 2013;4:2004 [PMID: 23759833]
  4. Opt Express. 2014 Sep 22;22(19):22470-8 [PMID: 25321717]
  5. Sci Rep. 2013 Oct 29;3:3074 [PMID: 24166360]
  6. J Am Chem Soc. 2002 May 1;124(17):4536-7 [PMID: 11971681]
  7. Opt Express. 2013 Jul 1;21(13):15847-58 [PMID: 23842371]
  8. Nanoscale. 2015 Aug 21;7(31):13196-206 [PMID: 26098863]
  9. Nano Lett. 2008 Oct;8(10):3481-7 [PMID: 18729410]
  10. ACS Nano. 2011 Dec 27;5(12):10055-64 [PMID: 22082201]
  11. ACS Nano. 2011 Feb 22;5(2):959-67 [PMID: 21229960]
  12. Phys Chem Chem Phys. 2015 Oct 14;17(38):24931-6 [PMID: 26344505]
  13. Nat Commun. 2017 Nov 13;8(1):1465 [PMID: 29133787]
  14. ACS Nano. 2014 Nov 25;8(11):11483-92 [PMID: 25337782]
  15. Phys Rev Lett. 2008 Sep 12;101(11):116401 [PMID: 18851303]
  16. Nat Commun. 2015 Aug 14;6:7899 [PMID: 26271900]
  17. Phys Rev Lett. 1992 Dec 7;69(23):3314-3317 [PMID: 10046787]
  18. Nano Lett. 2015 Apr 8;15(4):2588-93 [PMID: 25723653]
  19. Phys Rev Lett. 2005 Aug 5;95(6):067401 [PMID: 16090987]
  20. Angew Chem Int Ed Engl. 2011 Feb 25;50(9):2085-9 [PMID: 21344557]
  21. Nano Lett. 2013 Jul 10;13(7):3281-6 [PMID: 23746061]
  22. Sci Rep. 2013;3:1577 [PMID: 23546514]
  23. Opt Lett. 2013 Nov 1;38(21):4498-501 [PMID: 24177129]
  24. Nano Lett. 2010 Jan;10(1):77-84 [PMID: 19957966]
  25. ACS Nano. 2010 Nov 23;4(11):6369-76 [PMID: 21028780]
  26. Nat Mater. 2014 Mar;13(3):247-52 [PMID: 24317189]
  27. Chem Soc Rev. 2013 Apr 7;42(7):2679-724 [PMID: 23128995]
  28. Nature. 2009 Mar 12;458(7235):178-81 [PMID: 19279631]
  29. Rep Prog Phys. 2015 Jan;78(1):013901 [PMID: 25536670]
  30. Phys Rev Lett. 2007 May 18;98(20):206406 [PMID: 17677723]

Grants

  1. DMR-1309459/

Word Cloud

Created with Highcharts 10.0.0couplingplasmon-excitonstrongconjugatedorganicnanostructurespolymerscanStrongexcitonsapplicationsresonances-aggregatesemployedoptoelectronicdevicesusingachievedpolymertightly-boundmolecularsemiconductorssurfaceplasmonsmetalstudiedextensivelynumbertechnicalincludinglow-thresholdlasingroom-temperatureBose-EinsteincondensatesTypicallynarrowachieveHoweverlimitedcomparednumericalanalyticalcalculationsdemonstrateAg-conjugatedcore-shelldespitebroadspectrallinewidthshowusethickshellslargeoscillatorstrengthsmultiplevibroniccharacteristictypicalRabisplittingenergies1000meVobtainedrealisticmaterialdispersiverelativepermittivityparametersresultspresentedhereingiveinsightmechanismsbroadbandexcitonicmaterialsfeaturingvibrational-electronicrelevanthybridmetal-organicphotonicPlasmon-ExcitonCouplingAgNanoparticle-ConjugatedPolymerCore-ShellHybridNanostructureselectromagneticsimulationsexcitonplasmonvibrationally-dressed

Similar Articles

Cited By

No available data.