Grid-Based Bayesian Filtering Methods for Pedestrian Dead Reckoning Indoor Positioning Using Smartphones.

Miroslav Opiela, František Galčík
Author Information
  1. Miroslav Opiela: Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University, Jesenná 5, 041 54 Košice, Slovakia. ORCID
  2. František Galčík: Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.

Abstract

Indoor positioning systems for smartphones are often based on Pedestrian Dead Reckoning, which computes the current position from the previously estimated location. Noisy sensor measurements, inaccurate step length estimations, faulty direction detections, and a demand on the real-time calculation introduce the error which is suppressed using a map model and a Bayesian filtering. The main focus of this paper is on grid-based implementations of Bayes filters as an alternative to commonly used Kalman and particle filters. Our previous work regarding grid-based filters is elaborated and enriched with convolution mask calculations. More advanced implementations, the centroid grid filter, and the advanced point-mass filter are introduced. These implementations are analyzed and compared using different configurations on the same raw sensor recordings. The evaluation is performed on three sets of experiments: a custom simple path in faculty building in Slovakia, and on datasets from IPIN competitions from a shopping mall in France, 2018 and a research institute in Italy, 2019. Evaluation results suggests that proposed methods are qualified alternatives to the particle filter. Advantages, drawbacks and proper configurations of these filters are discussed in this paper.

Keywords

References

  1. Sensors (Basel). 2018 Jan 31;18(2): [PMID: 29385076]
  2. Sensors (Basel). 2019 Jan 21;19(2): [PMID: 30669617]
  3. Sensors (Basel). 2015 Mar 31;15(4):7857-77 [PMID: 25835189]
  4. Sensors (Basel). 2019 Feb 14;19(4): [PMID: 30769914]
  5. Sensors (Basel). 2018 Nov 22;18(12): [PMID: 30467290]
  6. Sensors (Basel). 2018 Feb 06;18(2): [PMID: 29415472]
  7. Sensors (Basel). 2020 Sep 18;20(18): [PMID: 32961940]
  8. Sensors (Basel). 2013 Jan 24;13(2):1539-62 [PMID: 23348038]
  9. Sensors (Basel). 2015 Oct 26;15(10):27230-50 [PMID: 26516857]
  10. Sensors (Basel). 2016 May 16;16(5): [PMID: 27196906]
  11. Sensors (Basel). 2017 Oct 13;17(10): [PMID: 29027948]
  12. Sensors (Basel). 2019 Mar 04;19(5): [PMID: 30836665]
  13. Sensors (Basel). 2015 Jan 05;15(1):715-32 [PMID: 25569750]
  14. Sensors (Basel). 2016 Sep 02;16(9): [PMID: 27598171]
  15. Sensors (Basel). 2018 Jun 19;18(6): [PMID: 29921813]

Grants

  1. APVV-15-0091/Agentúra na Podporu Výskumu a Vývoja
  2. 1/0056/18/Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Word Cloud

Created with Highcharts 10.0.0filterfiltersgrid-basedimplementationsadvancedIndoorpositioningPedestrianDeadReckoningsensorusingBayesianpaperBayesparticlepoint-massconfigurationssystemssmartphonesoftenbasedcomputescurrentpositionpreviouslyestimatedlocationNoisymeasurementsinaccuratesteplengthestimationsfaultydirectiondetectionsdemandreal-timecalculationintroduceerrorsuppressedmapmodelfilteringmainfocusalternativecommonlyusedKalmanpreviousworkregardingelaboratedenrichedconvolutionmaskcalculationscentroidgridintroducedanalyzedcompareddifferentrawrecordingsevaluationperformedthreesetsexperiments:customsimplepathfacultybuildingSlovakiadatasetsIPINcompetitionsshoppingmallFrance2018researchinstituteItaly2019EvaluationresultssuggestsproposedmethodsqualifiedalternativesAdvantagesdrawbacksproperdiscussedGrid-BasedFilteringMethodsPositioningUsingSmartphonesPDRindoorsmartphone

Similar Articles

Cited By