A 3D brain unit model to further improve prediction of local drug distribution within the brain.

Esmée Vendel, Vivi Rottschäfer, Elizabeth C M de Lange
Author Information
  1. Esmée Vendel: Mathematical Institute, Leiden University, Leiden, The Netherlands. ORCID
  2. Vivi Rottschäfer: Mathematical Institute, Leiden University, Leiden, The Netherlands.
  3. Elizabeth C M de Lange: Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.

Abstract

The development of drugs targeting the brain still faces a high failure rate. One of the reasons is a lack of quantitative understanding of the complex processes that govern the pharmacokinetics (PK) of a drug within the brain. While a number of models on drug distribution into and within the brain is available, none of these addresses the combination of factors that affect local drug concentrations in brain extracellular fluid (brain ECF). Here, we develop a 3D brain unit model, which builds on our previous proof-of-concept 2D brain unit model, to understand the factors that govern local unbound and bound drug PK within the brain. The 3D brain unit is a cube, in which the brain capillaries surround the brain ECF. Drug concentration-time profiles are described in both a blood-plasma-domain and a brain-ECF-domain by a set of differential equations. The model includes descriptions of blood plasma PK, transport through the blood-brain barrier (BBB), by passive transport via paracellular and transcellular routes, and by active transport, and drug binding kinetics. The impact of all these factors on ultimate local brain ECF unbound and bound drug concentrations is assessed. In this article we show that all the above mentioned factors affect brain ECF PK in an interdependent manner. This indicates that for a quantitative understanding of local drug concentrations within the brain ECF, interdependencies of all transport and binding processes should be understood. To that end, the 3D brain unit model is an excellent tool, and can be used to build a larger network of 3D brain units, in which the properties for each unit can be defined independently to reflect local differences in characteristics of the brain.

References

  1. Pharm Res. 2017 Feb;34(2):333-351 [PMID: 27864744]
  2. AAPS J. 2019 Aug 5;21(5):97 [PMID: 31385119]
  3. Comput Vis Sci. 2011 Oct 1;14(7):309-325 [PMID: 23172993]
  4. Curr Neuropharmacol. 2008 Sep;6(3):179-92 [PMID: 19506719]
  5. Expert Opin Drug Deliv. 2016 Jul;13(7):963-75 [PMID: 27020469]
  6. J Pharmacol Exp Ther. 1988 Dec;247(3):1233-9 [PMID: 3204515]
  7. Pharm Res. 1996 Mar;13(3):398-403 [PMID: 8692732]
  8. Biopharm Drug Dispos. 2002 Nov;23(8):327-38 [PMID: 12415573]
  9. PLoS One. 2011;6(10):e26709 [PMID: 22053202]
  10. Neuro Oncol. 2009 Apr;11(2):158-66 [PMID: 18780814]
  11. J Control Release. 2012 Aug 10;161(3):918-26 [PMID: 22642931]
  12. Expert Opin Drug Discov. 2015 Oct;10(10):1085-98 [PMID: 26165720]
  13. Comput Methods Biomech Biomed Engin. 2015;18(8):861-79 [PMID: 24261340]
  14. J Cereb Blood Flow Metab. 2002 Jun;22(6):753-65 [PMID: 12045674]
  15. Circ Res. 1994 Jul;75(1):55-62 [PMID: 8013082]
  16. Drug Metab Dispos. 2009 Jul;37(7):1548-56 [PMID: 19389861]
  17. NeuroRx. 2005 Jan;2(1):54-62 [PMID: 15717057]
  18. Perspect Medicin Chem. 2014 Jun 16;6:11-24 [PMID: 24963272]
  19. Fluids Barriers CNS. 2014 Dec 02;11(1):26 [PMID: 25678956]
  20. J Physiol. 1981 Dec;321:225-57 [PMID: 7338810]
  21. Pharm Res. 2006 Apr;23(4):705-17 [PMID: 16575498]
  22. Mol Imaging Biol. 2003 Nov-Dec;5(6):376-89 [PMID: 14667492]
  23. Drug Metab Dispos. 2004 Jan;32(1):132-9 [PMID: 14709630]
  24. Phys Med Biol. 2014 Oct 21;59(20):5987-6004 [PMID: 25230100]
  25. J Cereb Blood Flow Metab. 1989 Oct;9(5):696-708 [PMID: 2528555]
  26. J Cereb Blood Flow Metab. 1999 Aug;19(8):863-70 [PMID: 10458593]
  27. J Pharm Sci. 2016 Feb;105(2):965-971 [PMID: 26869440]
  28. J Neurosci Methods. 2002 Jan 30;113(2):199-206 [PMID: 11772441]
  29. Sci Rep. 2019 Mar 29;9(1):5308 [PMID: 30926941]
  30. J Pharmacol Exp Ther. 2006 Mar;316(3):1282-90 [PMID: 16330496]
  31. Microvasc Res. 1999 Nov;58(3):312-28 [PMID: 10527772]
  32. Am J Physiol. 1959 Dec;197:1205-10 [PMID: 14437359]
  33. Trends Pharmacol Sci. 2016 Oct;37(10):831-842 [PMID: 27394919]
  34. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547-51 [PMID: 6254090]
  35. J Theor Biol. 2015 Jul 7;376:48-65 [PMID: 25863266]
  36. Neuroimage. 2006 Aug 15;32(2):520-30 [PMID: 16713717]
  37. Eur J Pharm Sci. 2018 Jan 15;112:168-179 [PMID: 29133240]
  38. Drug Discov Today. 2013 Jul;18(13-14):667-73 [PMID: 23454741]
  39. AAPS J. 2017 Jul;19(4):891-909 [PMID: 28281195]
  40. Drug Discov Today. 2013 Aug;18(15-16):697-707 [PMID: 23500610]
  41. Prog Brain Res. 2000;125:129-54 [PMID: 11098654]
  42. Pharm Res. 2000 Dec;17(12):1456-60 [PMID: 11303953]
  43. Brain Res. 1980 Oct 13;199(1):49-61 [PMID: 6250676]
  44. J Pharmacol Exp Ther. 2007 Jul;322(1):205-13 [PMID: 17405866]
  45. NeuroRx. 2005 Jan;2(1):3-14 [PMID: 15717053]
  46. Free Radic Biol Med. 2004 Mar 1;36(5):592-604 [PMID: 14980703]
  47. J Pharmacol Exp Ther. 2009 Feb;328(2):652-62 [PMID: 19001154]
  48. Clin Pharmacol Ther. 1994 Sep;56(3):248-52 [PMID: 7924119]
  49. AAPS J. 2005 Oct 07;7(3):E532-43 [PMID: 16353931]
  50. Microvasc Res. 1981 Sep;22(2):143-55 [PMID: 7321902]
  51. J Cereb Blood Flow Metab. 2012 Jul;32(7):1167-76 [PMID: 22293984]
  52. Neurobiol Aging. 1990 Jan-Feb;11(1):39-46 [PMID: 2325815]
  53. Am J Physiol. 1983 Sep;245(3):R303-10 [PMID: 6614201]
  54. Prog Neurobiol. 2005 May;76(1):22-76 [PMID: 16011870]
  55. J Nucl Med. 2006 May;47(5):783-92 [PMID: 16644748]
  56. BMC Neurol. 2009 Jun 12;9 Suppl 1:S3 [PMID: 19534732]
  57. Pharm Res. 1997 Feb;14(2):128-34 [PMID: 9090698]
  58. Pharm Res. 2017 Apr;34(4):860-873 [PMID: 28155074]
  59. Xenobiotica. 2008 Dec;38(12):1518-35 [PMID: 18979396]
  60. Front Neuroeng. 2013 Aug 30;6:7 [PMID: 24009582]
  61. Mol Pharm. 2014 Mar 3;11(3):836-48 [PMID: 24446829]
  62. Acta Physiol Scand. 1963 Aug;58:292-305 [PMID: 14078649]
  63. Pharm Res. 2008 Aug;25(8):1737-50 [PMID: 18058202]
  64. Fluids Barriers CNS. 2019 May 16;16(1):12 [PMID: 31092261]
  65. Am J Physiol. 1984 Sep;247(3 Pt 2):H484-93 [PMID: 6476141]
  66. Drug Metab Pharmacokinet. 2016 Jun;31(3):224-33 [PMID: 27236639]
  67. Microvasc Res. 1997 Jul;54(1):35-42 [PMID: 9245642]

MeSH Term

Animals
Biological Transport, Active
Blood Flow Velocity
Blood-Brain Barrier
Brain
Extracellular Fluid
Humans
Mathematical Concepts
Models, Neurological
Pharmaceutical Preparations
Pharmacokinetics
Rats
Tissue Distribution

Chemicals

Pharmaceutical Preparations

Word Cloud

Created with Highcharts 10.0.0braindruglocalunitwithinECF3DmodelPKfactorstransportconcentrationsquantitativeunderstandingprocessesgoverndistributionaffectunboundboundbindingcandevelopmentdrugstargetingstillfaceshighfailurerateOnereasonslackcomplexpharmacokineticsnumbermodelsavailablenoneaddressescombinationextracellularfluiddevelopbuildspreviousproof-of-concept2DunderstandcubecapillariessurroundDrugconcentration-timeprofilesdescribedblood-plasma-domainbrain-ECF-domainsetdifferentialequationsincludesdescriptionsbloodplasmablood-brainbarrierBBBpassiveviaparacellulartranscellularroutesactivekineticsimpactultimateassessedarticleshowmentionedinterdependentmannerindicatesinterdependenciesunderstoodendexcellenttoolusedbuildlargernetworkunitspropertiesdefinedindependentlyreflectdifferencescharacteristicsimproveprediction

Similar Articles

Cited By