Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity and distributions in Australia.

Eugene T Madzokere, Willow Hallgren, Oz Sahin, Julie A Webster, Cameron E Webb, Brendan Mackey, Lara J Herrero
Author Information
  1. Eugene T Madzokere: Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.
  2. Willow Hallgren: Environmental Futures Research Institute, Griffith School of Environment, Gold Coast campus, Griffith University, Gold Coast, QLD, 4222, Australia.
  3. Oz Sahin: Cities Research Institute, Gold Coast campus, Griffith University, Gold Coast, QLD, 4222, Australia.
  4. Julie A Webster: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
  5. Cameron E Webb: Department of Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia.
  6. Brendan Mackey: Griffith Climate Change Response Program, Griffith School of Environment, Gold Coast campus, Griffith University, Gold Coast, QLD, 4222, Australia.
  7. Lara J Herrero: Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia. l.herrero@griffith.edu.au. ORCID

Abstract

Changes to Australia's climate and land-use patterns could result in expanded spatial and temporal distributions of endemic mosquito vectors including Aedes and Culex species that transmit medically important arboviruses. Climate and land-use changes greatly influence the suitability of habitats for mosquitoes and their behaviors such as mating, feeding and oviposition. Changes in these behaviors in turn determine future species-specific mosquito diversity, distribution and abundance. In this review, we discuss climate and land-use change factors that influence shifts in mosquito distribution ranges. We also discuss the predictive and epidemiological merits of incorporating these factors into a novel integrated statistical (SSDM) and mechanistic species distribution modelling (MSDM) framework. One potentially significant merit of integrated modelling is an improvement in the future surveillance and control of medically relevant endemic mosquito vectors such as Aedes vigilax and Culex annulirostris, implicated in the transmission of many arboviruses such as Ross River virus and Barmah Forest virus, and exotic mosquito vectors such as Aedes aegypti and Aedes albopictus. We conducted a focused literature search to explore the merits of integrating SSDMs and MSDMs with biotic and environmental variables to better predict the future range of endemic mosquito vectors. We show that an integrated framework utilising both SSDMs and MSDMs can improve future mosquito-vector species distribution projections in Australia. We recommend consideration of climate and environmental change projections in the process of developing land-use plans as this directly impacts mosquito-vector distribution and larvae abundance. We also urge laboratory, field-based researchers and modellers to combine these modelling approaches. Having many different variations of integrated (SDM) modelling frameworks could help to enhance the management of endemic mosquitoes in Australia. Enhanced mosquito management measures could in turn lead to lower arbovirus spread and disease notification rates.

Keywords

References

  1. J Travel Med. 2018 Jan 1;25(1): [PMID: 30247733]
  2. Med Vet Entomol. 2013 Sep;27(3):313-22 [PMID: 23205694]
  3. J Am Mosq Control Assoc. 2019 Jun;35(2):123-134 [PMID: 31442134]
  4. J Am Mosq Control Assoc. 2011 Mar;27(1):39-44 [PMID: 21476446]
  5. Environ Health Perspect. 2006 May;114(5):678-83 [PMID: 16675420]
  6. Commun Dis Intell Q Rep. 2005;29(3):296-8 [PMID: 16220868]
  7. Annu Rev Entomol. 1995;40:443-74 [PMID: 7810991]
  8. Am J Trop Med Hyg. 2013 Jan;88(1):65-72 [PMID: 23166197]
  9. Mem Inst Oswaldo Cruz. 1995 Sep-Oct;90(5):639-44 [PMID: 8569480]
  10. J Med Entomol. 2014 Sep;51(5):948-57 [PMID: 25276922]
  11. PLoS Negl Trop Dis. 2017 Feb 13;11(2):e0005286 [PMID: 28192520]
  12. Travel Med Infect Dis. 2011 May;9(3):113-25 [PMID: 21679887]
  13. PLoS Negl Trop Dis. 2013 Jun 27;7(6):e2207 [PMID: 23826399]
  14. PLoS Negl Trop Dis. 2016 Sep 19;10(9):e0004959 [PMID: 27643685]
  15. J Med Entomol. 1990 Sep;27(5):892-8 [PMID: 2231624]
  16. J Vector Ecol. 2001 Jun;26(1):21-31 [PMID: 11469181]
  17. PLoS One. 2007 Aug 22;2(8):e760 [PMID: 17712408]
  18. J Insect Physiol. 1971 Dec;17(12):2475-9 [PMID: 5158369]
  19. Virol J. 2017 Jun 9;14(1):108 [PMID: 28599659]
  20. Arch Virol. 1994;136(3-4):447-67 [PMID: 8031248]
  21. Trop Med Infect Dis. 2017 Oct 17;2(4): [PMID: 30270912]
  22. Vector Borne Zoonotic Dis. 2010 Jun;10(5):489-95 [PMID: 19877822]
  23. Med Vet Entomol. 2005 Dec;19(4):451-7 [PMID: 16336310]
  24. Parasit Vectors. 2018 Mar 2;11(1):123 [PMID: 29499744]
  25. Gates Open Res. 2018 Nov 1;2:36 [PMID: 30596205]
  26. Microbes Infect. 2000 Nov;2(14):1693-704 [PMID: 11137043]
  27. Ecol Lett. 2009 Apr;12(4):334-50 [PMID: 19292794]
  28. J Med Entomol. 1973 Jan 31;10(1):1-12 [PMID: 4697417]
  29. Parasit Vectors. 2016 Jul 07;9(1):387 [PMID: 27388293]
  30. Microbes Infect. 2009 Dec;11(14-15):1177-85 [PMID: 19450706]
  31. Int J Health Geogr. 2018 Oct 12;17(1):35 [PMID: 30314528]
  32. Int J Parasitol. 1998 Jun;28(6):955-69 [PMID: 9673874]
  33. PLoS Negl Trop Dis. 2017 Jul 20;11(7):e0005625 [PMID: 28727779]
  34. PLoS One. 2009 Nov 16;4(11):e7854 [PMID: 19924237]
  35. J Insect Physiol. 1968 Sep;14(9):1251-7 [PMID: 5761668]
  36. PLoS Negl Trop Dis. 2011 Nov;5(11):e1407 [PMID: 22140590]
  37. Epidemiol Infect. 2009 Oct;137(10):1486-93 [PMID: 19296873]
  38. J Am Mosq Control Assoc. 1994 Sep;10(3):390-6 [PMID: 7807082]
  39. Curr Opin Insect Sci. 2017 Oct;23:112-117 [PMID: 29129275]
  40. J Med Entomol. 2008 Nov;45(6):1173-9 [PMID: 19058645]
  41. Medscape J Med. 2008;10(10):238 [PMID: 19099032]
  42. J Infect Dis. 2015 Oct 15;212(8):1182-90 [PMID: 25784733]
  43. Insects. 2017 Feb 10;8(1): [PMID: 28208639]
  44. J Med Entomol. 1993 Nov;30(6):1018-28 [PMID: 8271243]
  45. Trends Ecol Evol. 2007 Jan;22(1):42-7 [PMID: 17011070]
  46. Ecohealth. 2012 Jun;9(2):183-94 [PMID: 22476689]
  47. Emerg Infect Dis. 2001 Sep-Oct;7(5):900-3 [PMID: 11747709]
  48. Med J Aust. 2008 Jan 7;188(1):41-3 [PMID: 18205563]
  49. Parasit Vectors. 2015 Jul 14;8:367 [PMID: 26170202]
  50. J Acoust Soc Am. 2014 Feb;135(2):933-41 [PMID: 25234901]
  51. Proc Biol Sci. 2014 Oct 7;281(1792): [PMID: 25122228]
  52. Int J Biometeorol. 2010 Sep;54(5):517-29 [PMID: 20683620]
  53. Am J Trop Med Hyg. 2013 Sep;89(3):516-7 [PMID: 23878182]
  54. J Med Entomol. 1997 Nov;34(6):579-88 [PMID: 9439109]
  55. J Med Entomol. 2020 Jan 9;57(1):241-251 [PMID: 31310648]
  56. Med Vet Entomol. 2000 Mar;14(1):31-7 [PMID: 10759309]
  57. Am J Trop Med Hyg. 1995 Nov;53(5):489-506 [PMID: 7485707]
  58. Vector Borne Zoonotic Dis. 2010 Apr;10(3):241-7 [PMID: 19725768]
  59. J Med Entomol. 2019 Sep 3;56(5):1290-1295 [PMID: 31095691]
  60. Trends Parasitol. 2018 Mar;34(3):227-245 [PMID: 29229233]
  61. J Insect Physiol. 2003 Jun;49(6):591-601 [PMID: 12804719]
  62. Nature. 2019 Oct;574(7778):404-408 [PMID: 31578527]
  63. Nature. 2017 Apr 6;544(7648):92-95 [PMID: 28355184]

MeSH Term

Animal Distribution
Animals
Australia
Biodiversity
Climate Change
Culicidae
Mosquito Control
Mosquito Vectors

Word Cloud

Created with Highcharts 10.0.0mosquitoland-usefuturedistributionmodellingclimateendemicAedesintegratedabundancechangevectorsenvironmentalmosquito-vectorAustraliaChangesdistributionsCulexmedicallyarbovirusesClimatechangesinfluencemosquitoesbehaviorsturndiversitydiscussfactorsalsomeritsstatisticalmechanisticspeciesframeworkmanyvirusSSDMsMSDMsbioticvariablesprojectionsapproachesmanagementAustralia'spatternsresultexpandedspatialtemporalvectors includingspecies thattransmitimportantgreatlysuitabilityhabitatsmatingfeedingovipositiondeterminespecies-specificreviewshiftsrangespredictiveepidemiologicalincorporatingnovelSSDMMSDMOnepotentiallysignificantmeritimprovementsurveillancecontrolrelevantvigilaxannulirostrisimplicatedtransmissionRossRiverBarmahForestexoticaegyptialbopictusconductedfocusedliteraturesearchexploreintegratingbetterpredictrangeshowutilisingcanimproverecommendconsiderationprocessdevelopingplansdirectlyimpactslarvaeurgelaboratoryfield-basedresearchersmodellerscombinedifferentvariationsSDMframeworkshelpenhanceEnhancedmeasuresleadlowerarbovirusspreaddiseasenotificationratesIntegratingimprovesmodelpredictionsimpactDistributionIntegratedMosquito

Similar Articles

Cited By