Unification of aggregate growth models by emergence from cellular and intracellular mechanisms.

T J Sego, James A Glazier, Andres Tovar
Author Information
  1. T J Sego: Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA. ORCID
  2. James A Glazier: Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
  3. Andres Tovar: Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.

Abstract

Multicellular aggregate growth is regulated by nutrient availability and removal of metabolites, but the specifics of growth dynamics are dependent on cell type and environment. Classical models of growth are based on differential equations. While in some cases these classical models match experimental observations, they can only predict growth of a limited number of cell types and so can only be selectively applied. Currently, no classical model provides a general mathematical representation of growth for any cell type and environment. This discrepancy limits their range of applications, which a general modelling framework can enhance. In this work, a hybrid cellular Potts model is used to explain the discrepancy between classical models as emergent behaviours from the same mathematical system. Intracellular processes are described using probability distributions of local chemical conditions for proliferation and death and simulated. By fitting simulation results to a generalization of the classical models, their emergence is demonstrated. Parameter variations elucidate how aggregate growth may behave like one classical growth model or another. Three classical growth model fits were tested, and emergence of the Gompertz equation was demonstrated. Effects of shape changes are demonstrated, which are significant for final aggregate size and growth rate, and occur stochastically.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5077688

References

  1. Nature. 2001 Oct 11;413(6856):628-31 [PMID: 11675785]
  2. Cancer Res. 2010 Jan 1;70(1):46-56 [PMID: 20048071]
  3. Cancer Res. 1986 Jul;46(7):3504-12 [PMID: 3708582]
  4. Methods Cell Biol. 2012;110:325-66 [PMID: 22482955]
  5. PLoS Comput Biol. 2014 Aug 28;10(8):e1003800 [PMID: 25167199]
  6. PLoS One. 2017 Jun 5;12(6):e0178691 [PMID: 28582419]
  7. Semin Cancer Biol. 2015 Feb;30:60-9 [PMID: 24657638]
  8. J Theor Biol. 2014 Feb 21;343:79-91 [PMID: 24211749]
  9. Cancer Res. 2014 Nov 15;74(22):6397-407 [PMID: 25217520]
  10. PLoS Comput Biol. 2016 Feb 11;12(2):e1004412 [PMID: 26866479]
  11. Bull Math Biol. 1993 May;55(3):655-74 [PMID: 8364422]
  12. Cancer Res. 2009 Dec 1;69(23):9133-40 [PMID: 19934335]
  13. Biophys J. 2008 Dec 15;95(12):5661-80 [PMID: 18835895]
  14. J R Soc Interface. 2014 Jan 15;11(92):20131124 [PMID: 24430128]
  15. J Theor Biol. 2003 Nov 21;225(2):147-51 [PMID: 14575649]
  16. J Theor Biol. 2010 Dec 7;267(3):417-25 [PMID: 20831877]
  17. Sci Rep. 2018 May 15;8(1):7561 [PMID: 29765087]
  18. PLoS One. 2015 Dec 15;10(12):e0143811 [PMID: 26669540]
  19. PLoS One. 2017 Sep 6;12(9):e0184229 [PMID: 28877206]
  20. Sci Rep. 2017 Mar 03;7:43693 [PMID: 28255161]
  21. Br J Cancer. 1998 Aug;78(3):382-7 [PMID: 9703287]
  22. Bull Math Biol. 2009 Jul;71(5):1189-227 [PMID: 19234746]
  23. Biophys J. 2005 Dec;89(6):3884-94 [PMID: 16199495]
  24. PLoS One. 2014 Jul 17;9(7):e102486 [PMID: 25032842]
  25. J Theor Biol. 2000 Apr 21;203(4):367-82 [PMID: 10736214]
  26. Math Med Biol. 2005 Jun;22(2):163-86 [PMID: 15781426]
  27. Nat Rev Cancer. 2008 Mar;8(3):227-34 [PMID: 18273038]
  28. Cancer Inform. 2015 Oct 04;14(Suppl 4):83-93 [PMID: 26461973]
  29. Bull Math Biol. 2015 Oct;77(10):1934-54 [PMID: 26481497]
  30. Phys Rev Lett. 1992 Sep 28;69(13):2013-2016 [PMID: 10046374]
  31. Front Oncol. 2013 Apr 16;3:87 [PMID: 23596570]
  32. J R Soc Interface. 2017 Feb;14(127): [PMID: 28179546]
  33. J Theor Biol. 2007 Jun 21;246(4):583-603 [PMID: 17374383]
  34. Phys Biol. 2005 Jul 12;2(3):133-47 [PMID: 16224119]
  35. Cancer Res. 2013 Apr 15;73(8):2407-11 [PMID: 23393201]
  36. Tissue Eng Part C Methods. 2016 Mar;22(3):221-49 [PMID: 26650970]
  37. Trends Cell Biol. 2016 Feb;26(2):88-110 [PMID: 26481052]
  38. Biofabrication. 2017 Jun 15;9(2):024104 [PMID: 28617667]
  39. Bull Math Biol. 2017 Jan;79(1):1-20 [PMID: 27804098]
  40. Br J Cancer. 1982 Feb;45(2):256-64 [PMID: 7059474]
  41. J Surg Oncol. 1997 Aug;65(4):284-97 [PMID: 9274795]
  42. Lab Chip. 2011 Feb 7;11(3):419-28 [PMID: 21079873]

Word Cloud

Created with Highcharts 10.0.0growthclassicalaggregatemodelsmodelemergencecellcancellulardemonstratedtypeenvironmentgeneralmathematicaldiscrepancyhybridPottssystemMulticellularregulatednutrientavailabilityremovalmetabolitesspecificsdynamicsdependentClassicalbaseddifferentialequationscasesmatchexperimentalobservationspredictlimitednumbertypesselectivelyappliedCurrentlyprovidesrepresentationlimitsrangeapplicationsmodellingframeworkenhanceworkusedexplainemergentbehavioursIntracellularprocessesdescribedusingprobabilitydistributionslocalchemicalconditionsproliferationdeathsimulatedfittingsimulationresultsgeneralizationParametervariationselucidatemaybehavelikeoneanotherThreefitstestedGompertzequationEffectsshapechangessignificantfinalsizerateoccurstochasticallyUnificationintracellularmechanismscomplex

Similar Articles

Cited By (2)