Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic .

Gyeong-Hwuii Kim, Jae-Won Kim, Jaegon Kim, Jong Pyo Chae, Jin-Sun Lee, Sung-Sik Yoon
Author Information
  1. Gyeong-Hwuii Kim: Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea. ORCID
  2. Jae-Won Kim: Institute of Biotechnology, CJ CheilJedang, Suwon 16495, Korea. ORCID
  3. Jaegon Kim: Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea. ORCID
  4. Jong Pyo Chae: Institute of Biotechnology, CJ CheilJedang, Suwon 16495, Korea. ORCID
  5. Jin-Sun Lee: Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea. ORCID
  6. Sung-Sik Yoon: Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea. ORCID

Abstract

Enterotoxigenic (ETEC) is the major pathogenic that causes diarrhea and edema in post-weaning piglets. In this study, we describe the morphology and characteristics of ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis. Phage ØCJ19 belongs to the family . One-step growth curve showed a latent phase of 5 min and burst size of approximately 20 phage particles/infected cell. Phage infectivity was stable for 2 h between 4°C and 55°C, and the phage was stable between pH 3 and 11. Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases and 79 open reading frames (ORFs). The full genomic sequence of phage ØCJ19 showed the most similarity to an phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny, toxins, virulence factors, or antibiotic resistance in this phage, suggesting that this phage can be used safely as a biological agent to control ETEC. Comparative genomic analysis in terms of the tail fiber proteins could provide genetic insight into host recognition and the relationship with other coliphages. These results showed the possibility to improve food safety by applying phage ØCJ19 to foods of animal origin contaminated with ETEC and suggests that it could be the basis for establishing a safety management system in the animal husbandry.

Keywords

References

  1. Am J Trop Med Hyg. 2007 Sep;77(3):571-82 [PMID: 17827382]
  2. Antimicrob Agents Chemother. 2020 Jun 23;64(7): [PMID: 32393490]
  3. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  4. Appl Environ Microbiol. 2001 Sep;67(9):4233-41 [PMID: 11526028]
  5. Intervirology. 2015;58(4):218-31 [PMID: 26337345]
  6. Viruses. 2015 Aug 24;7(8):4836-53 [PMID: 26305252]
  7. Infect Drug Resist. 2019 Nov 22;12:3595-3606 [PMID: 31819543]
  8. Vet Microbiol. 2020 Jan;240:108506 [PMID: 31902483]
  9. Front Microbiol. 2016 Apr 08;7:474 [PMID: 27092128]
  10. J Anim Physiol Anim Nutr (Berl). 2017 Feb;101(1):88-95 [PMID: 27271838]
  11. Porcine Health Manag. 2017 Aug 8;3:16 [PMID: 28794894]
  12. Antibiotics (Basel). 2019 Sep 04;8(3): [PMID: 31487893]
  13. PLoS One. 2015 Jan 23;10(1):e0116571 [PMID: 25615639]
  14. Intervirology. 2018;61(6):272-280 [PMID: 31071714]
  15. Annu Rev Microbiol. 2019 Sep 8;73:155-174 [PMID: 31185183]
  16. BMC Res Notes. 2015 Nov 27;8:728 [PMID: 26613761]
  17. Appl Environ Microbiol. 2004 Jun;70(6):3417-24 [PMID: 15184139]
  18. Appl Environ Microbiol. 2014 Nov;80(21):6694-703 [PMID: 25149517]
  19. Food Microbiol. 2019 Sep;82:523-532 [PMID: 31027814]
  20. J Microbiol Biotechnol. 2016 Sep 28;26(9):1629-35 [PMID: 27238936]
  21. Annu Rev Food Sci Technol. 2014;5:327-49 [PMID: 24422588]
  22. Appl Environ Microbiol. 2003 Dec;69(12):7499-506 [PMID: 14660403]
  23. J Biotechnol. 2005 Jan 12;115(1):101-7 [PMID: 15607229]
  24. J Appl Microbiol. 2017 Sep;123(3):570-581 [PMID: 28383815]
  25. PLoS One. 2014 Oct 21;9(10):e111230 [PMID: 25333962]
  26. Arch Virol. 2006 May;151(5):1031-7 [PMID: 16514500]
  27. Arch Microbiol. 2017 Aug;199(6):811-825 [PMID: 28597303]
  28. J Med Microbiol. 2009 Aug;58(Pt 8):1112-1117 [PMID: 19574416]
  29. Front Microbiol. 2018 Nov 13;9:2728 [PMID: 30555428]
  30. Vet Microbiol. 2007 Sep 20;124(1-2):47-57 [PMID: 17560053]
  31. PLoS One. 2018 Dec 31;13(12):e0208735 [PMID: 30596673]
  32. Sci Rep. 2018 May 24;8(1):8086 [PMID: 29795390]
  33. Mol Cell. 2017 Jun 1;66(5):721-728.e3 [PMID: 28552617]
  34. Front Microbiol. 2014 May 13;5:217 [PMID: 24860564]
  35. J Microbiol Biotechnol. 2019 May 28;29(5):696-703 [PMID: 30982317]

Word Cloud

Created with Highcharts 10.0.0phageØCJ19ETECanimalanalysisshowedEnterotoxigenicbacteriophagegeneticPhagestableGeneticgenomicfoodsafetyhusbandrymajorpathogeniccausesdiarrheaedemapost-weaningpigletsstudydescribemorphologycharacteristicsinfectsperformedbelongsfamilyOne-stepgrowthcurvelatentphase5minburstsizeapproximately20particles/infectedcellinfectivity2h4°C55°CpH311revealedtotal49567bases79openreadingframesORFsfullsequencesimilarityvB_EcoS_ESCO41genesencodinglysogenytoxinsvirulencefactorsantibioticresistancesuggestingcanusedsafelybiologicalagentcontrolComparativetermstailfiberproteinsprovideinsighthostrecognitionrelationshipcoliphagesresultspossibilityimproveapplyingfoodsorigincontaminatedsuggestsbasisestablishingmanagementsystemAnalysisCharacterizationBacteriophageActivesourceenterotoxigenicEscherichiacoligenomeannotation

Similar Articles

Cited By