Bayesian learning of multiple directed networks from observational data.

Federico Castelletti, Luca La Rocca, Stefano Peluso, Francesco C Stingo, Guido Consonni
Author Information
  1. Federico Castelletti: Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy.
  2. Luca La Rocca: Department of Physics, Informatics and Mathematics, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
  3. Stefano Peluso: Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy.
  4. Francesco C Stingo: Department of Statistics, Computer Science, Applications "G. Parenti", Università degli Studi di Firenze, Florence, Italy. ORCID
  5. Guido Consonni: Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy.

Abstract

Graphical modeling represents an established methodology for identifying complex dependencies in biological networks, as exemplified in the study of co-expression, gene regulatory, and protein interaction networks. The available observations often exhibit an intrinsic heterogeneity, which impacts on the network structure through the modification of specific pathways for distinct groups, such as disease subtypes. We propose to infer the resulting multiple graphs jointly in order to benefit from potential similarities across groups; on the other hand our modeling framework is able to accommodate group idiosyncrasies. We consider directed acyclic graphs (DAGs) as network structures, and develop a Bayesian method for structural learning of multiple DAGs. We explicitly account for Markov equivalence of DAGs, and propose a suitable prior on the collection of graph spaces that induces selective borrowing strength across groups. The resulting inference allows in particular to compute the posterior probability of edge inclusion, a useful summary for representing flow directions within the network. Finally, we detail a simulation study addressing the comparative performance of our method, and present an analysis of two protein networks together with a substantive interpretation of our findings.

Keywords

References

  1. Chin L., Andersen J.N., Futreal A.. Cancer genomics: from discovery science to personalized medicine. Nat Med 2011;17(3):297-303.
  2. Kristensen V.N., Lingjaerde O.C., Russnes H.G., Vollan H.K., Frigessi A., Borresen-Dale A.N.. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer 2014;14(5):299-313.
  3. Dobra A., Jones B., Hans C., Nevins J.R., West M.. Sparse graphical models for exploring gene expression data. J Multivar Anal 2004;90(1):196-212.
  4. Stingo Francesco C, Chen Yian A, Vannucci Marina, Barrier Marianne, Mirkes Philip E. A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann Appl Stat 2010;4(4):2024-2048.
  5. Telesca Donatello, Müller Peter, Parmigiani Giovanni, Freedman Ralph S. Modeling dependent gene expression. Ann Appl Stat 2012;6(2):542-560.
  6. Danaher Patrick, Wang Pei, Witten Daniela M.. The joint graphical lasso for inverse covariance estimation across multiple classes. J Royal Stat Soc Ser B (Stat Methodol). 2014;76(2):373-397.
  7. Zhao Sihai Dave, Cai T. Tony, Li Hongzhe. Direct estimation of differential networks. Biometrika 2014;101(2):253-268.
  8. Pircalabelu E., Claeskens G., Waldorp L. J.. Mixed scale joint graphical lasso. Biostatistics 2016;17(4):793-806.
  9. Peterson Christine, Stingo F. C., Vannucci Marina. Bayesian inference of multiple Gaussian graphical models. J Am Stat Assoc 2015;110(509):159-174.
  10. Tan Linda SL, Jasra Ajay, De Iorio Maria, Ebbels Timothy MD. Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks. Ann Appl Stat 2017;11(4):2222-2251.
  11. Jalali P, Khare K, Michailidis G. A Bayesian approach to joint estimation of multiple graphical models. arXiv e-prints; 2019. arXiv:1902.03651.
  12. Williams, D. R., Rast, P., Pericchi, L. R., & Mulder, J. Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection Psychol Methods. https://doi.org/10.1037/met0000254.
  13. Mohan Karthik, London Palma, Fazel Maryam, Witten Daniela, Lee Su-In. Node-based learning of multiple Gaussian graphical models. J Mach Learn Res 2014;15(13):445-488.
  14. Pearl Judea. Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge University Press; 2000.
  15. Yajima Masanao, Telesca Donatello, Ji Yuan, Müller Peter. Detecting differential patterns of interaction in molecular pathways. Biostatistics. 2014;16(2):240-251.
  16. Mitra Riten, Müller Peter, Ji Yuan. Bayesian graphical models for differential pathways. Bayesian Anal 2016;11(1):99-124.
  17. Oates C.J., Smith J.Q., Mukherjee S., Cussens J.. Exact estimation of multiple directed acyclic graphs. Stat Comput 2016;26(4):797-811.
  18. Andersson Steen A., Madigan David, Perlman Michael D.. A characterization of Markov equivalence classes for acyclic digraphs. Ann Stat 1997;25(2):505-541.
  19. R Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Vienna, Austria: 2017.
  20. Lauritzen Steffen L.. Graphical Models. Oxford, UK: Oxford University Press; 1996.
  21. Berger James O., Pericchi Luis R.. Objective Bayesian methods for model selection: introduction and comparison. In: Lahiri P., ed. Model Selection, IMS Lecture Notes Monograph Series, vol. 38: Beachwood, OH: Institute of Mathematical Statististics 2001 (pp. 135-207).
  22. Drton Mathias. Discrete chain graph models. Bernoulli 2009;15(3):736-753.
  23. Spirtes P., Glymour C., Scheines R.. Causation, Prediction and Search. Cambridge, MA: The MIT Press; 2nd 2000.
  24. Verma Thomas, Pearl Judea. Equivalence and synthesis of causal models. In: Bonissone Piero P., Henrion Max, Kanal Laveen N., Lemmer John F., eds. Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence :255-270 Association for Uncertainty in Artificial Intelligence, Elsevier Science New York, NY: 1991.
  25. Chickering David Maxwell. Learning equivalence classes of Bayesian-network structures. J Mach Learn Res 2002;2(Feb):445-498.
  26. Roverato Alberto. A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs. Scand J Stat 2005;32(2):295-312.
  27. Andersson Steen A., Madigan David, Perlman Michael D. Alternative Markov properties for chain graphs. Scand J Stat 2001;28(1):33-85.
  28. Consonni Guido, La Rocca Luca, Peluso Stefano. Objective Bayes covariate-adjusted sparse graphical model selection. Scand J Stat 2017;44(3):741-764.
  29. O'Hagan Anthony. Fractional Bayes factors for model comparison. J Royal Stat Soc Ser B (Methodol) 1995;57(1):99-138.
  30. Geiger Dan, Heckerman David. Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Ann Stat 2002;30(5):1412-1440.
  31. Castelletti F., Consonni G., Della Vedova M., Peluso S.. Learning Markov equivalence classes of directed acyclic graphs: an objective Bayes approach. Bayesian Anal 2018;13(4):1231-1256.
  32. He Yangbo, Jia Jinzhu, Yu Bin. Reversible MCMC on Markov equivalence classes of sparse directed acyclic graphs. Ann Stat 2013;41(4):1742-1779.
  33. Gottardo Raphael, Raftery Adrian E. Markov Chain Monte Carlo with mixtures of mutually singular distributions. J Comput Graph Stat 2008;17(4):949-975.
  34. Radhakrishnan A., Solus L., Uhler C.. Counting Markov equivalence classes by number of immoralities. In: Elidan Gal, Kersting Kristian, Ihler Alexander T., eds. Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence Association for Uncertainty in Artificial Intelligence, AUAI Press. 1-10; Corvallis, Oregon: 2017.
  35. Barbieri M. M., Berger J. O.. Optimal predictive model selection. Ann Stat 2004;32(3):870-897.
  36. Dor Dorit, Tarsi Michael. A Simple Algorithm to Construct a Consistent Extension of a Partially Oriented Graph. Technical Report R-185: Cognitive Systems Laboratory, UCLA Los Angeles, CA: 1992.
  37. Peters Jonas, Bühlmann Peter. Identifiability of Gaussian structural equation models with equal error variances. Biometrika 2014;101(1):219-228.
  38. Hauser Alain., Bühlmann Peter. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J Mach Learn Res 2012;13(1):2409-2464.
  39. Schwarz Gideon E.. Estimating the dimension of a model. Ann Stat 1978;6(2):461-464.
  40. Foygel Rina, Drton Mathias. Extended Bayesian information criteria for Gaussian graphical models. In: Lafferty J. D., Williams C. K. I., Shawe-Taylor J., Zemel R. S., Culotta A., eds. Proceedings of NIPS 2010, Advances in Neural Information Processing Systems vol. 23. Red Hook, NY: Curran Associates; 2010 (pp. 604-612).
  41. Li Fan, Zhang Nancy R.. Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 2010;105(491):1202-1214.
  42. Sachs Karen, Perez Omar, Pe'er Dana, Lauffenburger Douglas A, Nolan Garry P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005;308(5721):523-529.
  43. Castelletti Federico, Consonni Guido. Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways. Ann Appl Stat 2019;13(4):2289-2311.
  44. Geweke John. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. 148: Minneapolis, MN: Federal Reserve Bank of Minneapolis1991.
  45. Kornblau Steven M, Tibes Raoul, Qiu Yi Hua, et al. Functional proteomic profiling of AML predicts response and survival. Blood 2009;113(1):154-164.
  46. Ruvolo Peter P., Qiu YiHua, Coombes Kevin R., et al. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients. BBA Clin 2015;4(Dec):59-68.
  47. Murray Iain, Ghahramani Zoubin, MacKay David J. C.. MCMC for doubly-intractable distributions. In: Dechter Rina, Richardson Thomas, eds. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, :359-366 Corvallis, Oregon Association for Uncertainty in Artificial Intelligence, AUAI Press; 2006.
  48. Finegold Michael, Drton Mathias. Robust Bayesian graphical modeling using Dirichlet t-distributions. Bayesian Anal 2014;9(3):521-550.
  49. Cremaschi Andrea, Argiento Raffaele, Shoemaker Katherine, Peterson Christine, Vannucci Marina. Hierarchical normalized completely random measures for robust graphical modeling. Bayesian Anal 2018;9(3):521-550.

MeSH Term

Bayes Theorem
Causality
Computer Simulation
Humans

Word Cloud

Created with Highcharts 10.0.0networksnetworkproteingroupsmultipleDAGsMarkovmodelingstudyproposeresultinggraphsacrossdirectedBayesianmethodlearningequivalencegraphGraphicalrepresentsestablishedmethodologyidentifyingcomplexdependenciesbiologicalexemplifiedco-expressiongeneregulatoryinteractionavailableobservationsoftenexhibitintrinsicheterogeneityimpactsstructuremodificationspecificpathwaysdistinctdiseasesubtypesinferjointlyorderbenefitpotentialsimilaritieshandframeworkableaccommodategroupidiosyncrasiesconsideracyclicstructuresdevelopstructuralexplicitlyaccountsuitablepriorcollectionspacesinducesselectiveborrowingstrengthinferenceallowsparticularcomputeposteriorprobabilityedgeinclusionusefulsummaryrepresentingflowdirectionswithinFinallydetailsimulationaddressingcomparativeperformancepresentanalysistwotogethersubstantiveinterpretationfindingsobservationaldatarandomfieldessentialobjectiveBayes

Similar Articles

Cited By