Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay.

Jennifer Hammelman, Konstantin Krismer, Budhaditya Banerjee, David K Gifford, Richard I Sherwood
Author Information
  1. Jennifer Hammelman: Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  2. Konstantin Krismer: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  3. Budhaditya Banerjee: Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
  4. David K Gifford: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  5. Richard I Sherwood: Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

A key mechanism in cellular regulation is the ability of the transcriptional machinery to physically access DNA. Transcription factors interact with DNA to alter the accessibility of chromatin, which enables changes to gene expression during development or disease or as a response to environmental stimuli. However, the regulation of DNA accessibility via the recruitment of transcription factors is difficult to study in the context of the native genome because every genomic site is distinct in multiple ways. Here we introduce the multiplexed integrated accessibility assay (MIAA), an assay that measures chromatin accessibility of synthetic oligonucleotide sequence libraries integrated into a controlled genomic context with low native accessibility. We apply MIAA to measure the effects of sequence motifs on cell type-specific accessibility between mouse embryonic stem cells and embryonic stem cell-derived definitive endoderm cells, screening 7905 distinct DNA sequences. MIAA recapitulates differential accessibility patterns of 100-nt sequences derived from natively differential genomic regions, identifying E-box motifs common to epithelial-mesenchymal transition driver transcription factors in stem cell-specific accessible regions that become repressed in endoderm. We show that a single binding motif for a key regulatory transcription factor is sufficient to open chromatin, and classify sets of stem cell-specific, endoderm-specific, and shared accessibility-modifying transcription factor motifs. We also show that overexpression of two definitive endoderm transcription factors, and , results in changes to accessibility in DNA sequences containing their respective DNA-binding motifs and identify preferential motif arrangements that influence accessibility.

References

  1. Bioinformatics. 2019 Jul 15;35(14):i108-i116 [PMID: 31510655]
  2. Genome Res. 2019 Dec;29(12):1985-1995 [PMID: 31511305]
  3. Genes Dev. 2009 Dec 15;23(24):2824-38 [PMID: 20008934]
  4. Genomics. 2015 Sep;106(3):165-170 [PMID: 26072432]
  5. Curr Opin Cell Biol. 2011 Jun;23(3):277-83 [PMID: 21489773]
  6. Nat Genet. 2016 Oct;48(10):1193-203 [PMID: 27526324]
  7. Genome Res. 2013 Nov;23(11):1908-15 [PMID: 23921661]
  8. Science. 2018 Oct 26;362(6413): [PMID: 30361341]
  9. Development. 2017 Feb 15;144(4):649-656 [PMID: 28087626]
  10. Genome Res. 2016 Jul;26(7):990-9 [PMID: 27197224]
  11. Cell Rep. 2018 Jul 10;24(2):304-311 [PMID: 29996092]
  12. Genome Res. 2012 Sep;22(9):1798-812 [PMID: 22955990]
  13. Stem Cells. 2017 Mar;35(3):611-625 [PMID: 27739137]
  14. Genomics. 2015 Sep;106(3):159-164 [PMID: 26072433]
  15. Genome Res. 2018 Jun;28(6):891-900 [PMID: 29654070]
  16. Elife. 2020 Dec 02;9: [PMID: 33263279]
  17. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  18. EMBO J. 2013 Apr 3;32(7):938-53 [PMID: 23474895]
  19. Nucleic Acids Res. 2019 Sep 26;47(17):9069-9086 [PMID: 31350899]
  20. Cell Rep. 2016 Oct 25;17(5):1247-1254 [PMID: 27783940]
  21. Nature. 2009 Sep 10;461(7261):193-8 [PMID: 19741699]
  22. Nat Biotechnol. 2018 Nov 19;: [PMID: 30451991]
  23. Mol Cell. 2002 Feb;9(2):279-89 [PMID: 11864602]
  24. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1291-E1300 [PMID: 28137873]
  25. PLoS Comput Biol. 2012;8(8):e1002638 [PMID: 22912568]
  26. Mol Cell. 2017 Feb 16;65(4):604-617.e6 [PMID: 28212748]
  27. Genome Res. 2013 May;23(5):800-11 [PMID: 23512712]
  28. Nat Methods. 2011 Nov 13;8(12):1056-8 [PMID: 22081127]
  29. Elife. 2017 Jan 23;6: [PMID: 28112643]
  30. Mech Dev. 2011 Sep-Dec;128(7-10):387-400 [PMID: 21854845]
  31. Nucleic Acids Res. 2017 Feb 28;45(4):e16 [PMID: 28204611]
  32. Nat Neurosci. 2013 Sep;16(9):1219-27 [PMID: 23872598]
  33. Nat Biotechnol. 2012 Feb 26;30(3):271-7 [PMID: 22371084]
  34. Genome Inform. 2008;20:199-211 [PMID: 19425134]
  35. Nat Biotechnol. 2014 Feb;32(2):171-178 [PMID: 24441470]
  36. Nat Biotechnol. 2012 Feb 26;30(3):265-70 [PMID: 22371081]
  37. Nat Biotechnol. 2000 Apr;18(4):424-8 [PMID: 10748524]
  38. Genome Biol. 2017 Jun 27;18(1):124 [PMID: 28655328]
  39. Nature. 2012 Feb 05;482(7385):390-4 [PMID: 22307276]
  40. Genome Res. 2016 Oct;26(10):1430-1440 [PMID: 27456004]
  41. Nat Rev Genet. 2019 Apr;20(4):207-220 [PMID: 30675018]
  42. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  43. Cell. 2015 Aug 27;162(5):1051-65 [PMID: 26300125]
  44. Science. 2020 Jun 26;368(6498):1449-1454 [PMID: 32587015]
  45. Epigenetics Chromatin. 2019 Jun 13;12(1):36 [PMID: 31196130]
  46. PLoS Comput Biol. 2015 May 27;11(5):e1004271 [PMID: 26016777]
  47. Nat Genet. 2013 Sep;45(9):1021-1028 [PMID: 23892608]
  48. Sci Data. 2019 May 20;6(1):65 [PMID: 31110271]
  49. Genes Dev. 2014 Dec 15;28(24):2679-92 [PMID: 25512556]
  50. Genome Res. 2016 Jun;26(6):778-86 [PMID: 27197208]
  51. Cell Stem Cell. 2017 Feb 2;20(2):205-217.e8 [PMID: 27939218]
  52. Nucleic Acids Res. 2019 Feb 20;47(3):1239-1254 [PMID: 30496478]
  53. Nat Cell Biol. 2019 Jan;21(1):102-112 [PMID: 30602760]
  54. Genome Res. 2019 Dec;29(12):1996-2009 [PMID: 31694866]
  55. Cell. 2015 Apr 23;161(3):555-568 [PMID: 25892221]
  56. J Cell Sci. 2015 Dec 1;128(23):4380-94 [PMID: 26446258]

Grants

  1. R01 NS109217/NINDS NIH HHS
  2. K01 DK101684/NIDDK NIH HHS
  3. R01 HG008754/NHGRI NIH HHS
  4. R01 HG008363/NHGRI NIH HHS
  5. T32 GM087237/NIGMS NIH HHS

MeSH Term

Animals
Base Composition
Chromatin
DNA
Embryonic Stem Cells
Endoderm
Genomics
Mice
Nucleotide Motifs
Oligonucleotides
Regulatory Sequences, Nucleic Acid
Sequence Analysis, DNA
Transcription Factors

Chemicals

Chromatin
Oligonucleotides
Transcription Factors
DNA

Word Cloud

Created with Highcharts 10.0.0accessibilityDNAtranscriptionfactorschromatinmotifsstemgenomicassayMIAAendodermsequencesdifferentialkeyregulationchangescontextnativedistinctintegratedsequenceembryoniccellsdefinitiveregionscell-specificshowmotiffactormechanismcellularabilitytranscriptionalmachineryphysicallyaccessTranscriptioninteractalterenablesgeneexpressiondevelopmentdiseaseresponseenvironmentalstimuliHoweverviarecruitmentdifficultstudygenomeeverysitemultiplewaysintroducemultiplexedmeasuressyntheticoligonucleotidelibrariescontrolledlowapplymeasureeffectscelltype-specificmousecell-derivedscreening7905recapitulatespatterns100-ntderivednativelyidentifyingE-boxcommonepithelial-mesenchymaltransitiondriveraccessiblebecomerepressedsinglebindingregulatorysufficientopenclassifysetsendoderm-specificsharedaccessibility-modifyingalsooverexpressiontworesultscontainingrespectiveDNA-bindingidentifypreferentialarrangementsinfluenceIdentificationdeterminantsmassivelyparallelgenome-integratedreporter

Similar Articles

Cited By