Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks.

Felix Pütz, Manuel Henrich, Niklas Fehlemann, Andreas Roth, Sebastian Münstermann
Author Information
  1. Felix Pütz: Integrity of Materials and Structures, RWTH Aachen University, 52062 Aachen, Germany. ORCID
  2. Manuel Henrich: Integrity of Materials and Structures, RWTH Aachen University, 52062 Aachen, Germany. ORCID
  3. Niklas Fehlemann: Integrity of Materials and Structures, RWTH Aachen University, 52062 Aachen, Germany.
  4. Andreas Roth: Integrity of Materials and Structures, RWTH Aachen University, 52062 Aachen, Germany.
  5. Sebastian Münstermann: Integrity of Materials and Structures, RWTH Aachen University, 52062 Aachen, Germany. ORCID

Abstract

For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direction are applied. However, usually simple distribution functions like log normal or gamma distribution are used. Yet, these do not take the interdependencies between the microstructural parameters into account. To fully describe any metallic microstructure though, these interdependencies between the singular parameters need to be accounted for. To accomplish this representation, a machine learning approach was applied in this study. By implementing a Wasserstein generative adversarial network, the distribution, as well as the interdependencies could accurately be described. A validation scheme was applied to verify the excellent match between microstructure input data and synthetically generated output data.

Keywords

References

  1. Ultramicroscopy. 2011 Dec;111(12):1720-33 [PMID: 22094374]
  2. PLoS Comput Biol. 2016 Mar 28;12(3):e1004845 [PMID: 27018908]
  3. Materials (Basel). 2018 May 09;11(5): [PMID: 29747417]
  4. Materials (Basel). 2020 Apr 17;13(8): [PMID: 32316429]
  5. Sci Rep. 2013 Sep 30;3:2810 [PMID: 24077117]

Grants

  1. 278868966/Deutsche Forschungsgemeinschaft
  2. 390621612/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0parametersapplieddistributioninterdependenciesmicrostructurelearningrepresentativevolumeelementsusuallydescribegrainlikemachinedatagenerationstatisticaldescriptionrelevantnecessarygeometricstructuresingleCommonlyareaaspectratioslopeaxisrelativerollingdirectionHoweversimplefunctionslognormalgammausedYettakemicrostructuralaccountfullymetallicthoughsingularneedaccountedaccomplishrepresentationapproachstudyimplementingWassersteingenerativeadversarialnetworkwellaccuratelydescribedvalidationschemeverifyexcellentmatchinputsyntheticallygeneratedoutputGeneratingInputDataMicrostructureModelling:DeepLearningApproachUsingGenerativeAdversarialNetworksdeepdp-steelmodellingwassersteingan

Similar Articles

Cited By (2)