SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response.

Jessie Huang, Adam J Hume, Kristine M Abo, Rhiannon B Werder, Carlos Villacorta-Martin, Konstantinos-Dionysios Alysandratos, Mary Lou Beermann, Chantelle Simone-Roach, Jonathan Lindstrom-Vautrin, Judith Olejnik, Ellen L Suder, Esther Bullitt, Anne Hinds, Arjun Sharma, Markus Bosmann, Ruobing Wang, Finn Hawkins, Eric J Burks, Mohsan Saeed, Andrew A Wilson, Elke Mühlberger, Darrell N Kotton
Author Information
  1. Jessie Huang: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  2. Adam J Hume: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
  3. Kristine M Abo: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  4. Rhiannon B Werder: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
  5. Carlos Villacorta-Martin: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA.
  6. Konstantinos-Dionysios Alysandratos: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  7. Mary Lou Beermann: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  8. Chantelle Simone-Roach: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA.
  9. Jonathan Lindstrom-Vautrin: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA.
  10. Judith Olejnik: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
  11. Ellen L Suder: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
  12. Esther Bullitt: Department of Physiology & Biophysics, Boston University, Boston, MA 02118, USA.
  13. Anne Hinds: The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  14. Arjun Sharma: The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany.
  15. Markus Bosmann: The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany; Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA.
  16. Ruobing Wang: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  17. Finn Hawkins: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  18. Eric J Burks: Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA.
  19. Mohsan Saeed: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  20. Andrew A Wilson: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA. Electronic address: awilson@bu.edu.
  21. Elke Mühlberger: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA. Electronic address: muehlber@bu.edu.
  22. Darrell N Kotton: Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA. Electronic address: dkotton@bu.edu.

Abstract

A hallmark of severe COVID-19 pneumonia is SARS-CoV-2 infection of the facultative progenitors of lung alveoli, the alveolar epithelial type 2 cells (AT2s). However, inability to access these cells from patients, particularly at early stages of disease, limits an understanding of disease inception. Here, we present an in vitro human model that simulates the initial apical infection of alveolar epithelium with SARS-CoV-2 by using induced pluripotent stem cell-derived AT2s that have been adapted to air-liquid interface culture. We find a rapid transcriptomic change in infected cells, characterized by a shift to an inflammatory phenotype with upregulation of NF-κB signaling and loss of the mature alveolar program. Drug testing confirms the efficacy of remdesivir as well as TMPRSS2 protease inhibition, validating a putative mechanism used for viral entry in alveolar cells. Our model system reveals cell-intrinsic responses of a key lung target cell to SARS-CoV-2 infection and should facilitate drug development.

Keywords

References

  1. Lancet. 2020 Aug 1;396(10247):320-332 [PMID: 32682491]
  2. PLoS Pathog. 2021 Apr 9;17(4):e1009501 [PMID: 33836016]
  3. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  4. Bioinformatics. 2018 Apr 1;34(7):1246-1248 [PMID: 29228172]
  5. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  6. Science. 2020 Aug 7;369(6504):706-712 [PMID: 32527925]
  7. Cell Stem Cell. 2012 Apr 6;10(4):398-411 [PMID: 22482505]
  8. J Clin Invest. 2017 Jun 1;127(6):2277-2294 [PMID: 28463226]
  9. Cell Stem Cell. 2017 Oct 5;21(4):472-488.e10 [PMID: 28965766]
  10. Cell Host Microbe. 2016 Feb 10;19(2):181-93 [PMID: 26867177]
  11. mBio. 2014 May 20;5(3):e01174-14 [PMID: 24846384]
  12. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  13. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  14. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  15. Development. 2017 Nov 1;144(21):3879-3893 [PMID: 28947536]
  16. Sci Adv. 2020 Jul 08;6(28):eaba1972 [PMID: 32832598]
  17. Am J Physiol Lung Cell Mol Physiol. 2002 Nov;283(5):L1133-42 [PMID: 12376368]
  18. Am J Respir Cell Mol Biol. 2013 Jun;48(6):742-8 [PMID: 23418343]
  19. Cell Stem Cell. 2017 Jun 1;20(6):844-857.e6 [PMID: 28366587]
  20. Nature. 2020 Jul;583(7818):834-838 [PMID: 32408338]
  21. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16587-16595 [PMID: 32571934]
  22. Nat Biotechnol. 2014 Jan;32(1):84-91 [PMID: 24291815]
  23. Nat Methods. 2017 Nov;14(11):1097-1106 [PMID: 28967890]
  24. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  25. Cell Res. 2020 Aug;30(8):708-710 [PMID: 32632255]
  26. Emerg Infect Dis. 2020 Jun;26(6):1266-1273 [PMID: 32160149]
  27. Cell Host Microbe. 2020 Sep 9;28(3):455-464.e2 [PMID: 32707096]
  28. Cell Rep. 2021 May 4;35(5):109055 [PMID: 33905739]
  29. Nat Protoc. 2019 Dec;14(12):3303-3332 [PMID: 31732721]
  30. Nature. 2020 Jul;583(7818):830-833 [PMID: 32380511]
  31. J Infect Dis. 2020 Aug 4;222(5):722-725 [PMID: 32559285]
  32. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  33. Eur Respir J. 2020 May 14;55(5): [PMID: 32269089]
  34. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  35. F1000Res. 2016 Jun 17;5:1408 [PMID: 27441086]
  36. Mod Pathol. 2020 Nov;33(11):2104-2114 [PMID: 32561849]
  37. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  38. Nature. 2020 Jun;582(7813):561-565 [PMID: 32365353]
  39. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  40. Nat Commun. 2020 Jul 30;11(1):3810 [PMID: 32733001]
  41. Cell Stem Cell. 2020 Apr 2;26(4):593-608.e8 [PMID: 32004478]
  42. Stem Cell Reports. 2018 May 8;10(5):1579-1595 [PMID: 29657097]
  43. Cell Rep. 2020 Jul 21;32(3):107940 [PMID: 32668216]
  44. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  45. J Clin Invest. 2013 Jul;123(7):3025-36 [PMID: 23921127]
  46. Viruses. 2020 May 06;12(5): [PMID: 32384820]
  47. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  48. Nature. 2020 Oct;586(7827):113-119 [PMID: 32707573]
  49. Nucleic Acids Res. 2012 Sep 1;40(17):e133 [PMID: 22638577]
  50. Curr Protoc Stem Cell Biol. 2018 May;45(1):e51 [PMID: 30040246]

Grants

  1. R21 AI135912/NIAID NIH HHS
  2. U01 TR001810/NCATS NIH HHS
  3. T32 HL007035/NHLBI NIH HHS
  4. U01 HL134745/NHLBI NIH HHS
  5. R01 HL139799/NHLBI NIH HHS
  6. R01 DK117940/NIDDK NIH HHS
  7. R01 HL095993/NHLBI NIH HHS
  8. UL1 TR001430/NCATS NIH HHS
  9. F30 HL147426/NHLBI NIH HHS
  10. R01 DK101501/NIDDK NIH HHS
  11. U01 HL134766/NHLBI NIH HHS
  12. U01 HL148692/NHLBI NIH HHS
  13. 75N92020C00005/NHLBI NIH HHS

MeSH Term

Adenosine Monophosphate
Alanine
Alveolar Epithelial Cells
Animals
Antiviral Agents
COVID-19
Cells, Cultured
Drug Development
Enzyme Inhibitors
Humans
Inflammation
Models, Biological
Pluripotent Stem Cells
RNA-Seq
SARS-CoV-2
Serine Endopeptidases
Virus Replication

Chemicals

Antiviral Agents
Enzyme Inhibitors
remdesivir
Adenosine Monophosphate
Serine Endopeptidases
TMPRSS2 protein, human
Alanine

Word Cloud

Created with Highcharts 10.0.0alveolarSARS-CoV-2cellsinfectionlung2cellCOVID-19epithelialtypeAT2sdiseasehumanmodelinducedpluripotentstemhallmarkseverepneumoniafacultativeprogenitorsalveoliHoweverinabilityaccesspatientsparticularlyearlystageslimitsunderstandinginceptionpresentin vitrosimulatesinitialapicalepitheliumusingcell-derivedadaptedair-liquidinterfaceculturefindrapidtranscriptomicchangeinfectedcharacterizedshiftinflammatoryphenotypeupregulationNF-κBsignalinglossmatureprogramDrugtestingconfirmsefficacyremdesivirwellTMPRSS2proteaseinhibitionvalidatingputativemechanismusedviralentrysystemrevealscell-intrinsicresponseskeytargetfacilitatedrugdevelopmentInfectionPluripotentStemCell-DerivedHumanLungAlveolarTypeCellsElicitsRapidEpithelial-IntrinsicInflammatoryResponseiPSCsinflammation

Similar Articles

Cited By