Bioactive diterpenoid metabolism and cytotoxic activities of genetically transformed Euphorbia lathyris roots.

Vincent A Ricigliano, Vincent P Sica, Sonja L Knowles, Nicole Diette, Dianella G Howarth, Nicholas H Oberlies
Author Information
  1. Vincent A Ricigliano: USDA-ARS, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA, 70820, USA. Electronic address: Vincent.ricigliano@usda.gov.
  2. Vincent P Sica: Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
  3. Sonja L Knowles: Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
  4. Nicole Diette: Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80227, USA; Charles C. Gates Center for Regenerative Medicine, Aurora, CO, 80227, USA.
  5. Dianella G Howarth: Department of Biological Sciences, St. John's University, Jamaica, NY, 11439, USA.
  6. Nicholas H Oberlies: Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.

Abstract

Plants in the genus Euphorbia produce a wide variety of pharmacologically active diterpenoids with anticancer, multidrug resistance reversal, and antiviral properties. Some are the primary industrial source of ingenol mebutate, which is approved for treatment of the precancerous skin condition actinic keratosis. Similar to other high value phytochemicals, Euphorbia diterpenoids accumulate at low concentrations in planta and chemical synthesis produces similarly low yields. We established genetically transformed root cultures of Euphorbia lathryis as a strategy to gain greater access to diterpenoids from this genus. Transformed roots produced via stem explant infection with Agrobacterium rhizogenes strain 15834 recapitulated the metabolite profiles of field-grown plant roots and aerial tissues. Several putative diterpenoids were present in transformed roots, including ingenol and closely related structures, indicating that root cultures are a promising approach to Euphorbia-specific diterpenoid production. Treatment with methyl jasmonate led to a significant, albeit transient increase in mRNA levels of early diterpenoid biosynthetic enzymes (farnesyl pyrophosphate synthase, geranylgeranyl pyrophosphate synthase, and casbene synthase), suggesting that elicitation could prove useful in future pathway characterization and metabolic engineering efforts. We also show the potential of transformed E. lathyris root cultures for natural product drug discovery applications by measuring their cytotoxic activities using a panel of human carcinoma cell lines derived from prostate, cervix, breast, and lung.

Keywords

References

  1. Bioorg Med Chem. 2009 Jul 1;17(13):4786-92 [PMID: 19443229]
  2. Phytochem Anal. 2001 Jul-Aug;12(4):255-62 [PMID: 11705332]
  3. Blood. 2001 Nov 15;98(10):3006-15 [PMID: 11698284]
  4. Front Microbiol. 2015 Jul 16;6:720 [PMID: 26236301]
  5. Plant Cell. 2014 Aug;26(8):3286-98 [PMID: 25172144]
  6. J Am Chem Soc. 2002 Aug 21;124(33):9726-8 [PMID: 12175229]
  7. Trends Biotechnol. 2017 Sep;35(9):802-806 [PMID: 28751146]
  8. Planta. 2015 Feb;241(2):303-17 [PMID: 25549846]
  9. Acta Pharm Sin B. 2017 Jan;7(1):59-64 [PMID: 28119809]
  10. Planta Med. 2000 Apr;66(3):291-4 [PMID: 10821064]
  11. J Biol Chem. 1996 Nov 29;271(48):30748-54 [PMID: 8940054]
  12. Drug Discov Today. 2008 Feb;13(3-4):161-71 [PMID: 18275914]
  13. Curr Top Med Chem. 2011;11(17):2159-70 [PMID: 21671878]
  14. Mol Genet Genomics. 2002 Aug;267(6):730-45 [PMID: 12207221]
  15. Nature. 2013 Apr 25;496(7446):528-32 [PMID: 23575629]
  16. Nat Prod Rep. 2009 Nov;26(11):1466-87 [PMID: 19844641]
  17. Planta Med. 1984 Jun;50(3):259-61 [PMID: 6484031]
  18. Molecules. 2019 Nov 22;24(23): [PMID: 31771098]
  19. PLoS One. 2014 May 14;9(5):e97257 [PMID: 24827152]
  20. Iran J Pharm Res. 2012 Winter;11(1):241-9 [PMID: 24250446]
  21. J Nat Prod. 2016 Jan 22;79(1):126-31 [PMID: 26702644]
  22. Appl Microbiol Biotechnol. 2007 Apr;74(6):1175-85 [PMID: 17294182]
  23. J Am Acad Dermatol. 2013 Jan;68(1 Suppl 1):S39-48 [PMID: 23228305]
  24. Plant Physiol. 2013 Jun;162(2):1073-91 [PMID: 23613273]
  25. J Nat Prod. 2014 Apr 25;77(4):792-9 [PMID: 24660966]
  26. Dermatol Ther (Heidelb). 2014 Dec;4(2):157-64 [PMID: 25159813]
  27. Planta Med. 2005 Apr;71(4):349-54 [PMID: 15856412]
  28. Chem Biodivers. 2018 Oct;15(10):e1800144 [PMID: 30120899]
  29. Phytochem Anal. 2018 Jan;29(1):23-29 [PMID: 28786149]
  30. Sci Rep. 2016 Jul 28;6:30531 [PMID: 27464466]
  31. Eur J Med Res. 2018 Sep 28;23(1):45 [PMID: 30266096]
  32. Biotechnol Adv. 2015 Dec;33(8):1582-1614 [PMID: 26281720]
  33. Phytochemistry. 2016 May;125:43-53 [PMID: 26920719]
  34. Phytochemistry. 2010 Sep;71(13):1466-73 [PMID: 20594566]
  35. J Dermatolog Treat. 2018 Jun;29(4):393-399 [PMID: 28956675]
  36. Mol Plant. 2015 Jan;8(1):6-16 [PMID: 25578268]
  37. J Pharm Anal. 2011 Aug;1(3):197-202 [PMID: 29403699]
  38. Rapid Commun Mass Spectrom. 2013 Jan 15;27(1):276-80 [PMID: 23239342]
  39. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5082-9 [PMID: 27506796]
  40. Metab Eng. 2018 Jan;45:142-148 [PMID: 29247866]
  41. Fitoterapia. 2014 Oct;98:36-44 [PMID: 25016953]
  42. Front Plant Sci. 2019 Jul 02;10:846 [PMID: 31333695]
  43. Chem Rev. 2014 Sep 10;114(17):8579-612 [PMID: 25036812]
  44. Science. 2013 Aug 23;341(6148):878-82 [PMID: 23907534]
  45. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  46. J Drugs Dermatol. 2012 Oct;11(10):1156-7 [PMID: 23134979]

Grants

  1. F31 AT010558/NCCIH NIH HHS

MeSH Term

Diterpenes
Euphorbia
Humans
Plant Roots

Chemicals

Diterpenes

Word Cloud

Created with Highcharts 10.0.0EuphorbiaditerpenoidstransformedrootsrootculturesditerpenoidsynthasegenusingenollowgeneticallyAgrobacteriumpyrophosphatelathyriscytotoxicactivitiesmetabolismPlantsproducewidevarietypharmacologicallyactiveanticancermultidrugresistancereversalantiviralpropertiesprimaryindustrialsourcemebutateapprovedtreatmentprecancerousskinconditionactinickeratosisSimilarhighvaluephytochemicalsaccumulateconcentrationsplantachemicalsynthesisproducessimilarlyyieldsestablishedlathryisstrategygaingreateraccessTransformedproducedviastemexplantinfectionrhizogenesstrain15834recapitulatedmetaboliteprofilesfield-grownplantaerialtissuesSeveralputativepresentincludingcloselyrelatedstructuresindicatingpromisingapproachEuphorbia-specificproductionTreatmentmethyljasmonateledsignificantalbeittransientincreasemRNAlevelsearlybiosyntheticenzymesfarnesylgeranylgeranylcasbenesuggestingelicitationproveusefulfuturepathwaycharacterizationmetabolicengineeringeffortsalsoshowpotentialEnaturalproductdrugdiscoveryapplicationsmeasuringusingpanelhumancarcinomacelllinesderivedprostatecervixbreastlungBioactiveAnticancerDiterpeneIngenolSpecialized

Similar Articles

Cited By