Morphological Evidence for Functional Crosstalk Between Multiple GnRH Systems in the Male Tilapia, .

Satoshi Ogawa, Ishwar Parhar
Author Information
  1. Satoshi Ogawa: Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
  2. Ishwar Parhar: Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.

Abstract

Gonadotropin-releasing hormone (GnRH) is a reproductive neuropeptide, which controls vertebrate reproduction. In most vertebrates, there are more than two GnRH orthologs in the brain. In cichlid fish, the Nile Tilapia (), GnRH1 is the primary hypophysiotropic hormone, while GnRH2 and GnRH3 are non-hypophysiotropic but neuromodulatory in function. Hypophysiotropic GnRH neurons are thought to inter-communicate, while it remains unknown if hypophysiotropic and non-hypophysiotropic GnRH systems communicate with each other. In the present study, we examined interrelationship between three GnRH types using specific antibodies raised against their respective GnRH associated peptide (GAP) sequence. Double-immunofluorescence labeling coupled with confocal microscopy revealed that in sexually mature males, GnRH-GAP1-immunoreactive (-ir) processes are in proximities of GnRH-GAP3-ir cell somata in the terminal nerve, while GnRH-GAP1-ir cell somata were also accompanied by GnRH-GAP3-ir processes in the preoptic area. However, such interaction was not seen in immature males. Further, there was no interaction between GnRH-GAP2 and GnRH-GAP1 or GnRH-GAP3 neurons. Single cell gene expression analysis revealed co-expression of multiple GnRH receptor genes ( and ) in three GnRH-GAP cell types. In mature males, high levels of mRNA were expressed in GnRH-GAP1-ir cells. In immature males, and mRNAs are highly expressed in GnRH-GAP3-ir cells. These results suggest heterologous interactions between the three GnRH-GAP cell types and their potential functional interaction during different reproductive stages.

Keywords

References

  1. Hum Reprod. 1988 May;3(4):469-72 [PMID: 3292570]
  2. Endocrinology. 2004 Aug;145(8):3613-8 [PMID: 15155576]
  3. Gen Comp Endocrinol. 2017 Aug 1;249:48-54 [PMID: 28279673]
  4. Endocrinology. 2001 Nov;142(11):4729-39 [PMID: 11606438]
  5. BMC Evol Biol. 2014 Oct 25;14:215 [PMID: 25344287]
  6. J Endocrinol. 1997 Oct;155(1):121-32 [PMID: 9390014]
  7. J Comp Neurol. 2002 Apr 29;446(2):95-113 [PMID: 11932929]
  8. Comp Biochem Physiol B Biochem Mol Biol. 2012 Feb;161(2):124-33 [PMID: 22036613]
  9. BMC Biotechnol. 2005 Dec 07;5:31 [PMID: 16336641]
  10. Horm Behav. 1997 Aug;32(1):11-8 [PMID: 9344687]
  11. Neurosci Lett. 2006 Aug 7;403(3):201-5 [PMID: 16787709]
  12. Gen Comp Endocrinol. 2011 Jan 1;170(1):68-78 [PMID: 21036176]
  13. Front Endocrinol (Lausanne). 2012 Oct 17;3:122 [PMID: 23087673]
  14. Psychopharmacol Bull. 1997;33(2):311-6 [PMID: 9230649]
  15. Gen Comp Endocrinol. 2019 Sep 1;280:15-23 [PMID: 30951724]
  16. J Comp Neurol. 2005 Jun 20;487(1):28-41 [PMID: 15861460]
  17. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2204-9 [PMID: 15677717]
  18. J Neurophysiol. 2000 May;83(5):3196-200 [PMID: 10805718]
  19. Hormones (Athens). 2018 Sep;17(3):383-390 [PMID: 30168087]
  20. Endocr Rev. 1993 Apr;14(2):241-54 [PMID: 8325254]
  21. Brain Res Mol Brain Res. 1997 Oct 15;50(1-2):51-8 [PMID: 9406917]
  22. Acta Physiol (Oxf). 2008 May;193(1):3-15 [PMID: 18284378]
  23. Neuroscience. 2012 Feb 17;203:39-49 [PMID: 22198513]
  24. Science. 1973 Dec 14;182(4117):1148-9 [PMID: 4584371]
  25. Psychoneuroendocrinology. 2017 Jan;75:173-182 [PMID: 27837697]
  26. Science. 2014 Jan 3;343(6166):91-4 [PMID: 24385628]
  27. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 [PMID: 23482509]
  28. Biochem Biophys Res Commun. 1971 Jun 18;43(6):1334-9 [PMID: 4936338]
  29. Trends Pharmacol Sci. 2005 Mar;26(3):131-7 [PMID: 15749158]
  30. Anim Reprod Sci. 2005 Aug;88(1-2):5-28 [PMID: 16140177]
  31. Brain Behav Evol. 1993;42(4-5):215-30 [PMID: 8252374]
  32. Acta Biol Hung. 2008;59 Suppl:241-3 [PMID: 18652398]
  33. Arch Med Res. 2001 Nov-Dec;32(6):476-85 [PMID: 11750723]
  34. Front Neuroendocrinol. 1999 Jul;20(3):224-40 [PMID: 10433863]
  35. Neuroendocrinology. 1997 Jun;65(6):403-12 [PMID: 9208402]
  36. Microsc Res Tech. 1999 Jan 1;44(1):11-8 [PMID: 9915560]
  37. Comp Biochem Physiol B Biochem Mol Biol. 2002 May;132(1):203-15 [PMID: 11997222]
  38. Endocrinology. 2006 Jan;147(1):615-23 [PMID: 16179411]
  39. Endocrinology. 2015 Nov;156(11):4163-73 [PMID: 26261873]
  40. Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):346-64 [PMID: 17350014]
  41. J Exp Biol. 2002 Sep;205(Pt 17):2567-81 [PMID: 12151363]
  42. Front Endocrinol (Lausanne). 2019 Jul 12;10:469 [PMID: 31354632]
  43. Behav Pharmacol. 2008 Jul;19(4):308-16 [PMID: 18622178]
  44. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3805-10 [PMID: 25775522]
  45. Endocrinology. 2003 Aug;144(8):3297-300 [PMID: 12865305]
  46. Front Endocrinol (Lausanne). 2013 Nov 25;4:184 [PMID: 24324459]
  47. Endocrinology. 2004 Aug;145(8):3639-46 [PMID: 15105381]
  48. Cell Tissue Res. 2005 Aug;321(2):219-32 [PMID: 15947973]
  49. Endocrinology. 2010 Jan;151(1):332-40 [PMID: 19861502]
  50. Int J Mol Sci. 2020 Apr 15;21(8): [PMID: 32326396]
  51. Mol Cell Endocrinol. 2006 Sep 26;257-258:47-64 [PMID: 16934393]
  52. Brain Res Mol Brain Res. 1996 Sep 5;41(1-2):216-27 [PMID: 8883955]
  53. Exp Clin Endocrinol. 1993;101(4):230-7 [PMID: 8307111]
  54. J Neuroendocrinol. 2008 Mar;20(3):394-405 [PMID: 18208553]
  55. J Neuroendocrinol. 2007 Jun;19(6):475-9 [PMID: 17504441]
  56. Physiol Behav. 2012 Jul 16;106(5):612-8 [PMID: 22521514]
  57. Trends Endocrinol Metab. 2009 Oct;20(8):402-8 [PMID: 19740674]
  58. Endocrinology. 2012 Jul;153(7):3394-404 [PMID: 22544888]
  59. J Histochem Cytochem. 1994 Mar;42(3):433-7 [PMID: 7508473]
  60. Front Endocrinol (Lausanne). 2017 Aug 22;8:207 [PMID: 28878737]
  61. Prog Brain Res. 2002;141:3-17 [PMID: 12508557]
  62. J Neuroendocrinol. 2005 Aug;17(8):489-97 [PMID: 16011485]

MeSH Term

Animals
Gonadotropin-Releasing Hormone
Hypothalamus
Male
Neurons
Preoptic Area
Protein Precursors
Reproduction
Tilapia

Chemicals

Protein Precursors
progonadoliberin I
gonadotropin releasing hormone associated peptide
Gonadotropin-Releasing Hormone

Word Cloud

Created with Highcharts 10.0.0GnRHcellmalesthreetypesGnRH-GAP3-irinteractionhormonereproductivereproductioncichlidhypophysiotropicnon-hypophysiotropicneuronsGAPrevealedmatureprocessessomataGnRH-GAP1-irimmatureGnRH-GAPexpressedcellsGonadotropin-releasingneuropeptidecontrolsvertebratevertebratestwoorthologsbrainfishNiletilapiaGnRH1primaryGnRH2GnRH3neuromodulatoryfunctionHypophysiotropicthoughtinter-communicateremainsunknownsystemscommunicatepresentstudyexaminedinterrelationshipusingspecificantibodiesraisedrespectiveassociatedpeptidesequenceDouble-immunofluorescencelabelingcoupledconfocalmicroscopysexuallyGnRH-GAP1-immunoreactive-irproximitiesterminalnervealsoaccompaniedpreopticareaHoweverseenGnRH-GAP2GnRH-GAP1GnRH-GAP3Singlegeneexpressionanalysisco-expressionmultiplereceptorgeneshighlevelsmRNAmRNAshighlyresultssuggestheterologousinteractionspotentialfunctionaldifferentstagesMorphologicalEvidenceFunctionalCrosstalkMultipleSystemsMaleTilapiaGnRHR

Similar Articles

Cited By (1)