Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials.

Subhani Bandara, Hongbo Du, Laura Carson, Debra Bradford, Raghava Kommalapati
Author Information
  1. Subhani Bandara: Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA.
  2. Hongbo Du: Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA.
  3. Laura Carson: Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA.
  4. Debra Bradford: Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA.
  5. Raghava Kommalapati: Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA. ORCID

Abstract

Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.

Keywords

References

  1. J Insect Sci. 2019 Sep 1;19(5): [PMID: 31606745]
  2. Int J Food Microbiol. 2018 Nov 20;285:110-128 [PMID: 30075465]
  3. Drug Discov Today. 2018 May;23(5):1115-1125 [PMID: 29481876]
  4. Carbohydr Polym. 2018 Jan 15;180:46-54 [PMID: 29103520]
  5. Front Microbiol. 2016 Oct 04;7:1580 [PMID: 27757108]
  6. Int J Biol Macromol. 2018 Apr 15;110:392-398 [PMID: 29174361]
  7. Food Chem. 2019 Oct 15;295:671-679 [PMID: 31174811]
  8. Toxicol Rep. 2018 Mar 06;5:348-356 [PMID: 29854604]
  9. Food Chem. 2016 Mar 1;194:1266-74 [PMID: 26471681]
  10. J Control Release. 2019 Oct;311-312:26-42 [PMID: 31401198]
  11. Carbohydr Polym. 2019 May 15;212:334-344 [PMID: 30832865]
  12. Carbohydr Polym. 2018 Mar 15;184:100-107 [PMID: 29352900]
  13. J Control Release. 2010 Oct 1;147(1):109-17 [PMID: 20600404]
  14. J Biomed Mater Res A. 2019 Dec;107(12):2736-2755 [PMID: 31408265]
  15. ACS Omega. 2020 Feb 24;5(8):3943-3951 [PMID: 32149221]
  16. Nitric Oxide. 2016 Dec 30;61:10-19 [PMID: 27693703]
  17. Biomacromolecules. 2019 Jul 8;20(7):2477-2485 [PMID: 31094205]
  18. Sci Rep. 2019 Jun 3;9(1):8164 [PMID: 31160657]
  19. J Control Release. 2019 Apr 10;299:1-20 [PMID: 30771414]
  20. Infect Dis Clin North Am. 2013 Sep;27(3):651-74 [PMID: 24011835]
  21. Acta Biomater. 2015 Apr;17:201-9 [PMID: 25644449]
  22. Int J Nanomedicine. 2011;6:3351-9 [PMID: 22267920]
  23. Plant Physiol Biochem. 2018 Jun;127:393-402 [PMID: 29677682]
  24. Carbohydr Polym. 2019 Nov 1;223:115094 [PMID: 31426998]
  25. Sci Total Environ. 2018 Dec 10;644:1181-1189 [PMID: 30743831]
  26. Carbohydr Polym. 2020 Mar 1;231:115706 [PMID: 31888831]
  27. Nitric Oxide. 2019 Mar 1;84:38-44 [PMID: 30639449]
  28. Eur J Pharm Sci. 2014 Oct 1;62:243-50 [PMID: 24931189]
  29. Mol Immunol. 2019 Jul;111:182-197 [PMID: 31078054]
  30. J Food Sci Technol. 2018 Mar;55(3):1127-1133 [PMID: 29487455]
  31. Carbohydr Polym. 2018 Oct 1;197:623-630 [PMID: 30007655]
  32. Carbohydr Polym. 2018 Nov 1;199:341-352 [PMID: 30143138]
  33. Plant Cell. 2002;14 Suppl:S165-83 [PMID: 12045276]
  34. Int J Biol Macromol. 2015;77:36-51 [PMID: 25748851]
  35. J Colloid Interface Sci. 2019 Feb 15;536:160-170 [PMID: 30366181]
  36. Int J Biol Macromol. 2019 Dec 1;141:1165-1174 [PMID: 31499115]
  37. Nanomedicine. 2011 Feb;7(1):69-79 [PMID: 20620237]
  38. Polymers (Basel). 2019 Apr 12;11(4): [PMID: 31013742]
  39. ACS Nano. 2015 Jun 23;9(6):5725-40 [PMID: 26004286]
  40. Int J Biol Macromol. 2020 Jun 1;152:681-702 [PMID: 32084486]
  41. Nanomedicine. 2013 Oct;9(7):903-11 [PMID: 23352802]
  42. Acta Biomater. 2015 Oct;25:194-204 [PMID: 26193000]
  43. Int J Biol Macromol. 2019 Jun 1;130:727-736 [PMID: 30771392]
  44. Biomaterials. 2018 Mar;157:107-124 [PMID: 29268142]
  45. Colloids Surf B Biointerfaces. 2020 May;189:110854 [PMID: 32086023]
  46. J Environ Manage. 2016 Dec 1;183(Pt 3):1009-1025 [PMID: 27692514]
  47. Colloids Surf B Biointerfaces. 2011 Jan 1;82(1):71-80 [PMID: 20832259]
  48. Heliyon. 2018 Aug 17;4(8):e00737 [PMID: 30167495]
  49. Protoplasma. 2012 Apr;249(2):393-9 [PMID: 21626287]
  50. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:583-593 [PMID: 28532069]
  51. Int J Biol Macromol. 2014 Aug;69:471-5 [PMID: 24942991]
  52. Carbohydr Polym. 2016 Nov 20;153:600-618 [PMID: 27561533]
  53. Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:129-137 [PMID: 30606518]
  54. J Exp Bot. 2008;59(4):839-48 [PMID: 18272919]
  55. Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110115 [PMID: 31546384]
  56. Colloids Surf B Biointerfaces. 2019 Apr 1;176:462-470 [PMID: 30682619]
  57. Int J Biol Macromol. 2019 Feb 15;123:837-845 [PMID: 30465833]
  58. Biomacromolecules. 2019 Sep 9;20(9):3513-3523 [PMID: 31355634]
  59. Carbohydr Polym. 2017 Nov 15;176:257-265 [PMID: 28927606]
  60. 3 Biotech. 2017 May;7(1):81 [PMID: 28500403]
  61. Sci Technol Adv Mater. 2013 Aug 16;14(4):044407 [PMID: 27877592]
  62. Acta Biomater. 2020 Feb;103:237-246 [PMID: 31843717]
  63. Environ Technol. 2019 Nov;40(26):3523-3533 [PMID: 29799366]
  64. J Zhejiang Univ Sci B. 2009 Jun;10(6):427-33 [PMID: 19489108]
  65. Heliyon. 2019 May 24;5(5):e01776 [PMID: 31193581]
  66. Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110888 [PMID: 32409046]
  67. Ecotoxicol Environ Saf. 2016 Oct;132:318-28 [PMID: 27344400]
  68. Int J Biol Macromol. 2018 Jul 1;113:494-506 [PMID: 29481952]
  69. ACS Nano. 2015 Jan 27;9(1):6-11 [PMID: 25590560]
  70. J Control Release. 2013 Oct 28;171(2):113-21 [PMID: 23860187]
  71. Enzyme Microb Technol. 2017 May;100:71-78 [PMID: 28284314]
  72. Colloids Surf B Biointerfaces. 2018 Dec 1;172:430-439 [PMID: 30196228]
  73. Nanomaterials (Basel). 2018 Feb 05;8(2): [PMID: 29401728]
  74. Int J Biol Macromol. 2018 Apr 1;109:1311-1318 [PMID: 29175522]
  75. ACS Nano. 2014 Jun 24;8(6):5670-81 [PMID: 24801008]
  76. Int J Biol Macromol. 2018 Jun;112:148-155 [PMID: 29337097]
  77. Colloids Surf B Biointerfaces. 2020 Apr;188:110778 [PMID: 31945632]
  78. Cancer Lett. 2011 Dec 8;311(2):131-40 [PMID: 21840122]
  79. Carbohydr Polym. 2020 May 15;236:116075 [PMID: 32172888]
  80. Carbohydr Polym. 2017 Oct 15;174:1192-1200 [PMID: 28821044]
  81. Ultrasonics. 2015 Sep;62:75-9 [PMID: 26026869]
  82. Int J Pharm. 2013 Mar 10;445(1-2):196-202 [PMID: 23328681]
  83. J Colloid Interface Sci. 2019 Sep 15;552:218-229 [PMID: 31128402]
  84. Int J Biol Macromol. 2020 Feb 15;145:108-123 [PMID: 31870871]
  85. Bioresour Technol. 2017 Oct;242:295-303 [PMID: 28366689]
  86. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109854 [PMID: 31349407]

Grants

  1. 1914692 (NSF)/

Word Cloud

Created with Highcharts 10.0.0nanomaterialsagriculturalchitosan-basedapplicationsbiomedicalpromisingvarietyavailabilitychitosannanoparticlesabioticstresswaterfoodbornepathogenscancerphotothermaltherapydiscussedChitosanemergedbiodegradablenontoxicpolymermultiplebeneficialsectorsnanotechnologyevolvedfieldresearchersincorporatedproductsenhanceefficacybiocompatibilityMoreoverdueinherentantimicrobialchelatingpropertiesmodifiablefunctionalgroupsalsodirectlyusedreviewusefieldsrelatedmanagementplantscropscontrollinginsightspossiblemechanismsactionAdditionallytoxicityarisingaccumulationbiologicalsystemsfutureresearchavenuesgainedlimitedattentionscientificcommunityOverallshowcharacteristicssustainablepracticeseffectivehealthcareeco-friendlymannerAgriculturalBiomedicalApplicationsChitosan-BasedNanomaterialspurification

Similar Articles

Cited By (21)