Mobile Elements in Ray-Finned Fish Genomes.

Federica Carducci, Marco Barucca, Adriana Canapa, Elisa Carotti, Maria Assunta Biscotti
Author Information
  1. Federica Carducci: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
  2. Marco Barucca: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy. ORCID
  3. Adriana Canapa: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
  4. Elisa Carotti: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
  5. Maria Assunta Biscotti: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy. ORCID

Abstract

Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.

Keywords

References

  1. BMC Genet. 2014 Apr 08;15:44 [PMID: 24712907]
  2. Cell. 2002 Nov 1;111(3):433-44 [PMID: 12419252]
  3. Nat Ecol Evol. 2020 Jun;4(6):841-852 [PMID: 32231327]
  4. Mol Biol Evol. 2000 Nov;17(11):1673-84 [PMID: 11070055]
  5. PLoS One. 2014 Mar 14;9(3):e90946 [PMID: 24632562]
  6. Ecol Evol. 2019 Mar 05;9(7):3973-3983 [PMID: 31015981]
  7. Cytogenet Genome Res. 2011;134(4):303-7 [PMID: 21654160]
  8. Biol Direct. 2009 Nov 02;4:41 [PMID: 19883502]
  9. Sex Dev. 2013;7(6):325-33 [PMID: 24296872]
  10. Oecologia. 2019 Oct;191(2):253-260 [PMID: 31278439]
  11. Nat Genet. 2016 Apr;48(4):427-37 [PMID: 26950095]
  12. BMC Biol. 2018 Jan 29;16(1):16 [PMID: 29378592]
  13. PeerJ. 2014 Jun 10;2:e412 [PMID: 24949234]
  14. Mol Phylogenet Evol. 2003 Jan;26(1):110-20 [PMID: 12470943]
  15. Front Genet. 2019 Sep 05;10:776 [PMID: 31543900]
  16. Gigascience. 2017 Apr 1;6(4):1-6 [PMID: 28327943]
  17. Nat Rev Genet. 2018 Nov;19(11):688-704 [PMID: 30232369]
  18. Nat Genet. 2013 May;45(5):567-72 [PMID: 23542700]
  19. PLoS One. 2018 Mar 28;13(3):e0194502 [PMID: 29590185]
  20. Genome Res. 2003 Jul;13(7):1686-95 [PMID: 12805276]
  21. Nat Commun. 2019 Oct 11;10(1):4625 [PMID: 31604932]
  22. Genome Biol Evol. 2012;4(2):168-83 [PMID: 22200636]
  23. Sci Data. 2017 Jan 17;4:160132 [PMID: 28094797]
  24. Genetica. 2006 May;127(1-3):133-41 [PMID: 16850219]
  25. Genome Biol. 2018 Nov 19;19(1):199 [PMID: 30454069]
  26. Mol Phylogenet Evol. 2011 Mar;58(3):439-46 [PMID: 21241813]
  27. J Hered. 2017 May 1;108(3):254-261 [PMID: 27940473]
  28. Genes (Basel). 2018 Feb 14;9(2): [PMID: 29443947]
  29. BMC Genomics. 2007 Nov 16;8:422 [PMID: 18021408]
  30. Genetica. 2011 Oct;139(10):1273-82 [PMID: 22286964]
  31. Eur J Histochem. 2011 May 27;55(2):e12 [PMID: 22193293]
  32. Mol Ecol Resour. 2010 Jan;10(1):173-6 [PMID: 21565005]
  33. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13636-41 [PMID: 12368471]
  34. Cytogenet Genome Res. 2009;125(3):224-34 [PMID: 19738382]
  35. Genome Res. 2000 Sep;10(9):1307-18 [PMID: 10984449]
  36. J Agric Food Chem. 2008 Aug 13;56(15):6246-51 [PMID: 18616271]
  37. Chromosome Res. 2015 Sep;23(3):505-31 [PMID: 26395902]
  38. Zebrafish. 2014 Dec;11(6):518-27 [PMID: 25122415]
  39. Genome Biol Evol. 2014 May 19;6(6):1393-407 [PMID: 24846630]
  40. Cytogenet Genome Res. 2019;159(1):39-47 [PMID: 31593951]
  41. BMC Biol. 2004 Mar 11;2:3 [PMID: 15070407]
  42. BMC Evol Biol. 2017 Jul 6;17(1):162 [PMID: 28683774]
  43. J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):629-637 [PMID: 28921831]
  44. Mol Biol Evol. 2014 May;31(5):1188-99 [PMID: 24505119]
  45. Cytogenet Genome Res. 2013;141(2-3):90-102 [PMID: 24080951]
  46. Cytogenet Genome Res. 2016;149(4):312-320 [PMID: 27710958]
  47. Mar Biotechnol (NY). 2001 May;3(3):275-80 [PMID: 14961365]
  48. Cytogenet Genome Res. 2009;127(1):43-53 [PMID: 20110656]
  49. Int J Mol Sci. 2019 Feb 06;20(3): [PMID: 30736325]
  50. Genetica. 2009 Jul;136(3):461-9 [PMID: 19112556]
  51. Biol Rev Camb Philos Soc. 2006 Nov;81(4):531-43 [PMID: 16893475]
  52. Cytogenet Genome Res. 2015;146(4):319-24 [PMID: 26559509]
  53. Evol Appl. 2020 May 04;13(6):1214-1239 [PMID: 32684956]
  54. Genet Mol Biol. 2016 Mar;39(1):40-8 [PMID: 27007897]
  55. Mar Genomics. 2017 Aug;34:67-77 [PMID: 28545861]
  56. Biomol Concepts. 2011 Oct 1;2(5):333-41 [PMID: 25962041]
  57. Mol Cytogenet. 2017 Oct 23;10:37 [PMID: 29075328]
  58. Nat Rev Genet. 2008 May;9(5):397-405 [PMID: 18368054]
  59. PLoS Biol. 2005 Oct;3(10):e314 [PMID: 16128622]
  60. Heredity (Edinb). 2014 Jun;112(6):627-37 [PMID: 24424165]
  61. PLoS Genet. 2010 Feb 12;6(2):e1000844 [PMID: 20169179]
  62. Cytogenet Genome Res. 2005;110(1-4):510-21 [PMID: 16093704]
  63. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254 [PMID: 29760103]
  64. Nature. 2016 Apr 18;533(7602):200-5 [PMID: 27088604]
  65. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5008-13 [PMID: 8643520]
  66. Science. 2016 Mar 4;351(6277):1083-7 [PMID: 26941318]
  67. Genes (Basel). 2019 Sep 09;10(9): [PMID: 31505864]
  68. Genet Mol Biol. 2018 Jul/Sept.;41(3):585-592 [PMID: 30043833]
  69. Mol Ecol Resour. 2008 Jul;8(4):777-9 [PMID: 21585889]
  70. Comp Biochem Physiol Part D Genomics Proteomics. 2014 Sep;11:49-58 [PMID: 25178533]
  71. G3 (Bethesda). 2015 Sep 22;5(11):2513-22 [PMID: 26401030]
  72. Brief Funct Genomics. 2014 Mar;13(2):144-56 [PMID: 24291769]
  73. Mol Ecol. 2013 Mar;22(6):1503-17 [PMID: 23293987]
  74. Cytogenet Genome Res. 2002;99(1-4):157-63 [PMID: 12900559]
  75. Clin Microbiol Infect. 2016 Apr;22(4):312-323 [PMID: 26899828]
  76. Biol Lett. 2019 Sep 27;15(9):20190279 [PMID: 31480936]
  77. Genes Genet Syst. 2001 Feb;76(1):1-8 [PMID: 11376546]
  78. PLoS One. 2015 Jun 12;10(6):e0130199 [PMID: 26067030]
  79. Genet Mol Biol. 2014 Mar;37(1):30-6 [PMID: 24688288]
  80. Cytogenet Genome Res. 2005;110(1-4):407-15 [PMID: 16093693]
  81. PLoS Genet. 2015 Jan 08;11(1):e1004915 [PMID: 25569788]
  82. Sci Rep. 2017 Aug 3;7(1):7213 [PMID: 28775309]
  83. Genomics. 2020 Sep;112(5):3097-3107 [PMID: 32470643]
  84. Genetics. 2003 Feb;163(2):747-58 [PMID: 12618411]
  85. Gene. 2016 Nov 30;593(2):308-14 [PMID: 27562083]
  86. Trends Genet. 2003 Dec;19(12):674-8 [PMID: 14642744]
  87. J Hered. 2016 Mar;107(2):173-80 [PMID: 26792596]
  88. Ecotoxicology. 2010 Feb;19(2):239-66 [PMID: 19806452]
  89. Sci Rep. 2019 Nov 20;9(1):17146 [PMID: 31748593]
  90. J Biomed Biotechnol. 2011;2011:218231 [PMID: 21541243]
  91. PLoS One. 2012;7(10):e46642 [PMID: 23118857]
  92. Genome Biol Evol. 2020 Mar 1;12(3):66-76 [PMID: 32068835]
  93. Mol Cells. 2008 Oct 31;26(4):387-95 [PMID: 18612245]
  94. PLoS One. 2019 Jun 12;14(6):e0218085 [PMID: 31188893]
  95. J Virol. 2009 Oct;83(19):10152-62 [PMID: 19625413]
  96. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):464-9 [PMID: 25535393]
  97. Sci China Life Sci. 2019 Aug;62(8):1003-1018 [PMID: 31098893]
  98. Comp Cytogenet. 2011 May 05;5(1):61-9 [PMID: 24260619]
  99. BMC Genomics. 2018 May 9;19(1):339 [PMID: 29739320]
  100. Methods Mol Biol. 2019;1910:177-207 [PMID: 31278665]
  101. Bioessays. 2005 Sep;27(9):937-45 [PMID: 16108068]
  102. Mol Ecol Resour. 2009 Jan;9(1):233-5 [PMID: 21564612]
  103. Gene. 2002 Aug 7;295(2):193-8 [PMID: 12354653]
  104. Genome Biol Evol. 2017 Jan 1;9(1):161-177 [PMID: 28158585]
  105. Mol Cytogenet. 2015 Oct 26;8:81 [PMID: 26512297]
  106. Genetica. 2015 Feb;143(1):55-62 [PMID: 25549800]
  107. Genome Biol Evol. 2015 Jun 25;7(7):1972-87 [PMID: 26112966]
  108. Int J Mol Sci. 2018 Nov 20;19(11): [PMID: 30463278]
  109. Nat Rev Genet. 2012 Mar 16;13(4):283-96 [PMID: 22421730]
  110. Mob DNA. 2011 May 31;2(1):8 [PMID: 21627776]
  111. Chromosoma. 2019 Dec;128(4):547-560 [PMID: 31456013]
  112. Genome Biol. 2016 Dec 20;17(1):258 [PMID: 27993155]
  113. Heredity (Edinb). 2011 Dec;107(6):487-95 [PMID: 21673742]
  114. Sci Rep. 2019 Nov 11;9(1):16511 [PMID: 31712633]
  115. Mol Phylogenet Evol. 2013 Dec;69(3):514-23 [PMID: 23933489]
  116. Sci Rep. 2017 Jun 9;7(1):3157 [PMID: 28600492]
  117. Proc Biol Sci. 2018 Feb 14;285(1872): [PMID: 29445022]
  118. Comp Cytogenet. 2017 Jan 20;11(1):65-79 [PMID: 28919950]
  119. G3 (Bethesda). 2015 Oct 04;5(12):2601-10 [PMID: 26438298]
  120. Int J Mol Sci. 2019 Oct 15;20(20): [PMID: 31618912]
  121. BMC Evol Biol. 2010 Sep 06;10:271 [PMID: 20815941]
  122. Science. 2004 Mar 12;303(5664):1626-32 [PMID: 15016989]
  123. Mar Biotechnol (NY). 2020 Feb;22(1):94-108 [PMID: 31748906]
  124. Genes (Basel). 2018 Oct 09;9(10): [PMID: 30304855]
  125. BMC Genomics. 2018 Feb 13;19(1):141 [PMID: 29439662]
  126. Cytogenet Genome Res. 2013;140(2-4):97-116 [PMID: 23796598]
  127. J Mol Evol. 2001 Apr;52(4):351-60 [PMID: 11343131]
  128. iScience. 2020 Oct 09;23(11):101662 [PMID: 33134892]
  129. Proc Biol Sci. 2014 Jan 22;281(1778):20132881 [PMID: 24452024]
  130. Gene. 2003 Oct 23;317(1-2):187-93 [PMID: 14604807]
  131. Cytogenet Genome Res. 2015;147(4):217-39 [PMID: 26967166]
  132. J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):607-619 [PMID: 28035749]
  133. Heredity (Edinb). 2017 Mar;118(3):276-283 [PMID: 28000659]
  134. J Mol Evol. 2009 Oct;69(4):395-403 [PMID: 19826746]
  135. Mob DNA. 2013 Aug 27;4(1):19 [PMID: 23981484]
  136. Mob Genet Elements. 2013 Nov 1;3(6):e27460 [PMID: 24404417]
  137. Cytogenet Genome Res. 2016;149(4):297-303 [PMID: 27750255]
  138. Plant J. 2011 Jan;65(1):146-155 [PMID: 21175897]
  139. BMC Evol Biol. 2013 Jul 16;13:152 [PMID: 23865932]
  140. J Virol. 2004 Jan;78(2):899-911 [PMID: 14694121]
  141. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7847-52 [PMID: 10393910]
  142. Cytogenet Genome Res. 2013;141(2-3):126-32 [PMID: 23969732]
  143. mBio. 2018 Jun 26;9(3): [PMID: 29946051]
  144. J Hered. 2017 Apr 1;108(3):239-253 [PMID: 28182237]
  145. PLoS Genet. 2019 Aug 22;15(8):e1008013 [PMID: 31437150]
  146. Cytogenet Genome Res. 2015;146(4):311-8 [PMID: 26618348]
  147. Genetica. 2013 Sep;141(7-9):329-36 [PMID: 24008809]
  148. Curr Opin Genet Dev. 2018 Apr;49:115-123 [PMID: 29715568]
  149. Cytogenet Genome Res. 2011;132(1-2):64-70 [PMID: 20798486]
  150. Mob Genet Elements. 2011 Jul;1(2):112-117 [PMID: 22016858]
  151. Genetics. 2004 Dec;168(4):2037-47 [PMID: 15611173]
  152. G3 (Bethesda). 2019 May 7;9(5):1283-1294 [PMID: 30833292]
  153. Mob DNA. 2019 Nov 3;10:42 [PMID: 31700550]
  154. J Hered. 2017 Sep 1;108(6):650-657 [PMID: 28821184]
  155. Genetics. 1996 Nov;144(3):1165-80 [PMID: 8913758]
  156. Sci Rep. 2019 Oct 28;9(1):15399 [PMID: 31659260]
  157. BMC Genomics. 2012 Mar 19;13:96 [PMID: 22424280]
  158. Mol Biol Evol. 2012 Feb;29(2):631-45 [PMID: 21873630]
  159. Genome Res. 2000 Dec;10(12):1890-902 [PMID: 11116085]
  160. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11382-7 [PMID: 11553795]
  161. Mob DNA. 2016 Feb 09;7:4 [PMID: 26862351]
  162. Mob DNA. 2019 Dec 12;10:49 [PMID: 31857829]
  163. Cytogenet Genome Res. 2011;133(1):34-42 [PMID: 21196713]
  164. Mol Biol Evol. 2004 Jun;21(6):1146-51 [PMID: 15014147]
  165. Zoolog Sci. 2002 Jan;19(1):1-6 [PMID: 12025396]
  166. Nucleic Acids Res. 1995 Nov 25;23(22):4628-34 [PMID: 8524653]
  167. Front Microbiol. 2016 Aug 09;7:1197 [PMID: 27555838]
  168. Mol Biol Rep. 2018 Oct;45(5):951-960 [PMID: 30008142]
  169. G3 (Bethesda). 2011 Dec;1(7):637-45 [PMID: 22384375]
  170. Gigascience. 2019 Mar 1;8(3): [PMID: 30715332]
  171. Comp Cytogenet. 2019 Apr 05;13(2):1-16 [PMID: 31040935]
  172. Mol Ecol. 2017 Sep;26(18):4712-4724 [PMID: 28390096]
  173. BMC Genomics. 2017 Jan 18;18(1):95 [PMID: 28100185]
  174. Nat Commun. 2016 Mar 02;7:10716 [PMID: 26931494]
  175. Mol Phylogenet Evol. 2013 Jan;66(1):223-32 [PMID: 23032571]
  176. J Exp Zool B Mol Dev Evol. 2017 Nov;328(7):709-721 [PMID: 28944589]
  177. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1638-43 [PMID: 14757817]
  178. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]
  179. Genome Biol Evol. 2015 Jan 09;7(2):567-80 [PMID: 25577199]
  180. Gene. 2004 Jul 21;336(2):175-83 [PMID: 15246529]
  181. Mol Biol Evol. 2014 Jun;31(6):1536-45 [PMID: 24692655]
  182. Environ Pollut. 2019 Feb;245:494-503 [PMID: 30458379]
  183. Genetics. 2000 May;155(1):273-81 [PMID: 10790401]
  184. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4540-5 [PMID: 16537396]
  185. BMC Genomics. 2009 Apr 03;10:146 [PMID: 19344507]
  186. Comp Cytogenet. 2017 Jun 22;11(3):435-462 [PMID: 29093797]
  187. Mol Biol Evol. 1999 Nov;16(11):1427-38 [PMID: 10555274]
  188. PLoS Pathog. 2018 Jun 14;14(6):e1007072 [PMID: 29902269]

Grants

  1. 59, 2020/Ministero della Ricerca e dell'Istruzione

Word Cloud

Created with Highcharts 10.0.0fishesActinopterygiigroupspecieshighdiversitygenomeobservedtransposableelementsTEsgenomesTEray-finnedevolutionRay-finneddiversevertebratesencompassingadaptedlivefreshwatermarineenvironmentsdeepseamountainstreamsGenomesequencingoffersgeneticresourceinvestigatingmolecularbasesphenotypicadaptationsvarioushabitatswiderangesizesduerolepowerfuldriversAnalysesperformeddateprovideevidenceclassIIDNAtransposonsabundantcomponentfishcomparedvertebratemanysuperfamiliespresentactinopterygiansMoreoverspecificreportedpossibleresultintricaterelationshipenvironmentdatasummarizedunderlinebiologicalinterestmodelinvestigatemechanismsresponsiblebiodiversitytaxonMobileElementsRay-FinnedFishGenomes

Similar Articles

Cited By