Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal-Support Interactions: A New Twist on an Old Story.

Hao Chen, Shi-Ze Yang, Zhenzhen Yang, Wenwen Lin, Haidi Xu, Qiang Wan, Xian Suo, Tao Wang, De-En Jiang, Jie Fu, Sheng Dai
Author Information
  1. Hao Chen: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
  2. Shi-Ze Yang: Eyring Materials Center, Arizona State University, Tempe, Arizona 85257, United States.
  3. Zhenzhen Yang: Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  4. Wenwen Lin: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
  5. Haidi Xu: Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States.
  6. Qiang Wan: Department of Chemistry, University of California, Riverside, California 92521, United States.
  7. Xian Suo: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
  8. Tao Wang: Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  9. De-En Jiang: Department of Chemistry, University of California, Riverside, California 92521, United States.
  10. Jie Fu: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
  11. Sheng Dai: Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Abstract

Strong metal-support interaction (SMSI) is recognized as a pivotal strategy in hetereogeneous catalysis to prevent the sintering of metal nanoparticles (NPs), but issues including restriction of supports to reducible metal oxides, nonporous architecture, sintering by thermal treatment at >800 °C, and unstable nature limit their practical application. Herein, the construction of non-oxide-derived SMSI nanocatalysts based on highly crystalline and nanoporous hexagonal boron nitride (h-BN) 2D materials was demonstrated via in situ encapsulation and reduction using NaBH, NaNH, and noble metal salts as precursors. The as-prepared nanocatalysts exhibited robust thermal stability and sintering resistance to withstand thermal treatment at up to 950 °C, rendering them with high catalytic efficiency and durability in CO oxidation even in the presence of HO and hydrocarbon simulated to realistic exhaust systems. More importantly, our generic strategy offers a novel and efficient avenue to design ultrastable hetereogeneous catalysts with diverse metal and support compositions and architectures.

References

  1. Small. 2016 Jun;12(22):2942-68 [PMID: 27073174]
  2. Science. 2016 Dec 23;354(6319):1570-1573 [PMID: 27934702]
  3. J Am Chem Soc. 2005 Aug 3;127(30):10480-1 [PMID: 16045322]
  4. J Am Chem Soc. 2012 Jun 20;134(24):10251-8 [PMID: 22612449]
  5. Nat Commun. 2015 Nov 27;6:8849 [PMID: 26611437]
  6. Nat Mater. 2019 Jul;18(7):746-751 [PMID: 31011216]
  7. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  8. Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4494-4498 [PMID: 28328073]
  9. Nat Chem. 2017 Feb;9(2):120-127 [PMID: 28282057]
  10. Angew Chem Int Ed Engl. 2018 Jul 16;57(29):8953-8957 [PMID: 29787634]
  11. Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10606-11 [PMID: 27461145]
  12. J Am Chem Soc. 2016 Jan 13;138(1):56-9 [PMID: 26669943]
  13. Science. 2003 Mar 14;299(5613):1688-91 [PMID: 12637733]
  14. J Am Chem Soc. 2018 Sep 12;140(36):11241-11251 [PMID: 30016862]
  15. Science. 2016 Jul 8;353(6295):150-4 [PMID: 27387946]
  16. Science. 2013 Aug 16;341(6147):771-3 [PMID: 23868919]
  17. ACS Nano. 2013 Jun 25;7(6):4902-10 [PMID: 23682983]
  18. J Am Chem Soc. 2014 Apr 16;136(15):5687-96 [PMID: 24654835]
  19. Nat Mater. 2013 Jan;12(1):34-9 [PMID: 23142841]
  20. Nat Commun. 2017 Jun 09;8:15291 [PMID: 28598418]
  21. Science. 2017 Dec 15;358(6369):1419-1423 [PMID: 29242344]
  22. Science. 2012 Mar 9;335(6073):1205-8 [PMID: 22403386]
  23. ACS Nano. 2014 Oct 28;8(10):10455-60 [PMID: 25264601]
  24. Angew Chem Int Ed Engl. 2019 Jul 29;58(31):10626-10630 [PMID: 31157948]
  25. J Am Chem Soc. 2016 Dec 14;138(49):16130-16139 [PMID: 27960312]
  26. Chem Commun (Camb). 2016 Jan 4;52(1):144-7 [PMID: 26502800]
  27. J Am Chem Soc. 2020 Jan 8;142(1):169-184 [PMID: 31815460]
  28. J Am Chem Soc. 2019 Feb 20;141(7):2975-2983 [PMID: 30677301]
  29. Angew Chem Int Ed Engl. 2015 Nov 2;54(45):13263-7 [PMID: 26360804]
  30. ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6694-6700 [PMID: 29385799]
  31. Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10761-10765 [PMID: 28691396]
  32. Sci Adv. 2017 Oct 13;3(10):e1700231 [PMID: 29043293]
  33. Angew Chem Int Ed Engl. 2006 May 26;45(22):3614-8 [PMID: 16639762]
  34. Chem Rev. 2017 May 10;117(9):6225-6331 [PMID: 28306244]
  35. Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10766-70 [PMID: 27444210]
  36. Chem Rev. 2018 May 23;118(10):4981-5079 [PMID: 29658707]
  37. Chem Soc Rev. 2016 Jul 11;45(14):3989-4012 [PMID: 27173728]
  38. Chem Commun (Camb). 2015 Oct 25;51(83):15332-5 [PMID: 26340167]
  39. Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4544-8 [PMID: 25683230]
  40. Chem Soc Rev. 2014 Feb 7;43(3):934-59 [PMID: 24280706]

Word Cloud

Created with Highcharts 10.0.0metalsinteringthermalStrongSMSIstrategyhetereogeneoustreatment°Cnanocatalysts2Dmetal-supportinteractionrecognizedpivotalcatalysispreventnanoparticlesNPsissuesincludingrestrictionsupportsreducibleoxidesnonporousarchitecture>800unstablenaturelimitpracticalapplicationHereinconstructionnon-oxide-derivedbasedhighlycrystallinenanoporoushexagonalboronnitrideh-BNmaterialsdemonstratedviasituencapsulationreductionusingNaBHNaNHnoblesaltsprecursorsas-preparedexhibitedrobuststabilityresistancewithstand950renderinghighcatalyticefficiencydurabilityCOoxidationevenpresenceHOhydrocarbonsimulatedrealisticexhaustsystemsimportantlygenericoffersnovelefficientavenuedesignultrastablecatalystsdiversesupportcompositionsarchitecturesSinter-ResistantNanoparticleCatalystsAchievedBoronNitride-BasedMetal-SupportInteractions:NewTwistOldStory

Similar Articles

Cited By