Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses.

Tobias Lortzing, Reinhard Kunze, Anke Steppuhn, Monika Hilker, Vivien Lortzing
Author Information
  1. Tobias Lortzing: Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  2. Reinhard Kunze: Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  3. Anke Steppuhn: Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  4. Monika Hilker: Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
  5. Vivien Lortzing: Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany. Vivien.lortzing@fu-berlin.de.

Abstract

Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.

References

  1. Dicke, M., Agrawal, A. A. & Bruin, J. Plants talk, but are they deaf?. Trends Plant Sci. 8, 403–405 (2003). [PMID: 13678903]
  2. Heil, M. & Silva Bueno, J. C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 104, 5467–5472 (2007). [PMID: 17360371]
  3. Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52 (2014). [PMID: 24165497]
  4. Pashalidou, F. G. et al. Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecol. Lett. https://doi.org/10.1111/ele.13509 (2020). [DOI: 10.1111/ele.13509]
  5. Helms, A. M., De Moraes, C. M., Mescher, M. C. & Tooker, J. F. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biol. 14, 173 (2014). [PMID: 24947749]
  6. Helms, A. M. et al. Identification of an insect-produced olfactory cue that primes plant defenses. Nat. Commun. 8, 337 (2017). [PMID: 28835618]
  7. Hilker, M. & Fatouros, N. E. Resisting the onset of herbivore attack: Plants perceive and respond to insect eggs. Curr. Opin. Plant Biol. 32, 9–16 (2016). [PMID: 27267276]
  8. Engelberth, J., Contreras, C. F., Dalvi, C., Li, T. & Engelberth, M. Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS ONE 8, e77465 (2013). [PMID: 24155960]
  9. Ye, M., Glauser, G., Lou, Y., Erb, M. & Hu, L. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31, 687–698 (2019). [PMID: 30760558]
  10. Hilker, M. & Fatouros, N. E. Plant responses to insect egg deposition. Annu. Rev. Entomol. 60, 493–515 (2015). [PMID: 25341089]
  11. Bittner, N., Trauer-Kizilelma, U. & Hilker, M. Early plant defence against insect attack: Involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245, 993–1007 (2017). [PMID: 28175992]
  12. Geuss, D., Stelzer, S., Lortzing, T. & Steppuhn, A. Solanum dulcamara’s response to eggs of an insect herbivore comprises ovicidal hydrogen peroxide production. Plant Cell Environ. 40, 2663–2677 (2017). [PMID: 28667817]
  13. Fatouros, N. E. et al. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proc. R. Soc. Biol. Sci. 281, 20141254 (2014). [DOI: 10.1098/rspb.2014.1254]
  14. Gouhier-Darimont, C., Schmiesing, A., Bonnet, C., Lassueur, S. & Reymond, P. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J. Exp. Bot. 64, 665–674 (2013). [PMID: 23264520]
  15. Rondoni, G. et al. Vicia faba plants respond to oviposition by invasive Halyomorpha halys activating direct defences against offspring. J. Pest Sci. 2004(91), 671–679 (2018). [DOI: 10.1007/s10340-018-0955-3]
  16. Bonnet, C. et al. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biol. 17, 127 (2017). [PMID: 28716054]
  17. Lortzing, V. et al. Insect egg deposition renders plant defense against hatching larvae more effective in a salicylic acid-dependent manner. Plant Cell Environ. 42, 1019–1032 (2019). [PMID: 30252928]
  18. Kim, J., Tooker, J. F., Luthe, D. S., De Moraes, C. M. & Felton, G. W. Insect eggs can enhance wound response in plants: A study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLoS ONE 7, e37420 (2012). [PMID: 22616005]
  19. Bandoly, M., Grichnik, R., Hilker, M. & Steppuhn, A. Priming of anti-herbivore defence in Nicotiana attenuata by insect oviposition: Herbivore-specific effects. Plant Cell Environ. 39, 848–859 (2016). [PMID: 26566692]
  20. Bandoly, M., Hilker, M. & Steppuhn, A. Oviposition by Spodoptera exigua on Nicotiana attenuata primes induced plant defence against larval herbivory. Plant J. 83, 661–672 (2015). [PMID: 26096574]
  21. Drok, S., Bandoly, M., Stelzer, S., Lortzing, T. & Steppuhn, A. Moth oviposition shapes the species-specific transcriptional and phytohormonal response of Nicotiana attenuata to larval feeding. Sci. Rep. 8, 10249 (2018). [PMID: 29980784]
  22. Geuss, D., Lortzing, T., Schwachtje, J., Kopka, J. & Steppuhn, A. Oviposition by Spodoptera exigua on Solanum dulcamara alters the plant’s response to herbivory and impairs larval performance. Int. J. Mol. Sci. 19, 4008 (2018). [>PMCID: ]
  23. Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: Generally applicable gene set enrichment for pathway analysis. BMC Bioinform. 10, 161 (2009). [DOI: 10.1186/1471-2105-10-161]
  24. Altmann, S. et al. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Mol. Ecol. 27, 4901–4915 (2018). [PMID: 30329187]
  25. Reymond, P. Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238, 247–258 (2013). [PMID: 23748628]
  26. Bittner, N., Hundacker, J., Achotegui-Castells, A., Anderbrant, O. & Hilker, M. Defense of Scots pine against sawfly eggs (Diprion pini) is primed by exposure to sawfly sex pheromones. Proc. Natl. Acad. Sci. USA. 116, 24668–24675 (2019). [PMID: 31748269]
  27. Shapiro, A. M. & DeVay, J. E. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71, 631–632 (1987). [PMID: 28312240]
  28. Clarke, J. D., Liu, Y., Klessig, D. F. & Dong, X. Uncoupling PR gene expression from NPR1 and bacterial resistance: Characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10, 557–569 (1998). [PMID: 9548982]
  29. Ding, Y., Shaholli, D. & Mou, Z. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. Front. Plant Sci. 7, 763 (2015).
  30. Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. & Ohashi, Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39, 500–507 (1998). [DOI: 10.1093/oxfordjournals.pcp.a029397]
  31. Fatouros, N. E. et al. Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. Front. Plant Sci. 6, 794 (2015). [PMID: 26483811]
  32. Little, D., Gouhier-Darimont, C., Bruessow, F. & Reymond, P. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol. 143, 784–800 (2007). [PMID: 17142483]
  33. Wasternack, C. How jasmonates earned their laurels: Past and present. J. Plant Growth Regul. 34, 761–794 (2015). [DOI: 10.1007/s00344-015-9526-5]
  34. Wasternack, C. & Hause, B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013). [PMID: 23558912]
  35. Diezel, C., von Dahl, C. C., Gaquerel, E. & Baldwin, I. T. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150, 1576–1586 (2009). [PMID: 19458114]
  36. Heidel, A. J. & Baldwin, I. T. Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ. 27, 1362–1373 (2004). [DOI: 10.1111/j.1365-3040.2004.01228.x]
  37. Nguyen, D. et al. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara. Plant Cell Environ. 39, 1485–1499 (2016). [PMID: 26759219]
  38. Caarls, L., Pieterse, C. M. J. & Van Wees, S. C. M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6, 170 (2015). [PMID: 25859250]
  39. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012). [PMID: 22559264]
  40. Bruessow, F., Gouhier-Darimont, C., Buchala, A., Metraux, J.-P. & Reymond, P. Insect eggs suppress plant defence against chewing herbivores. Plant J. 62, 876–885 (2010). [PMID: 20230509]
  41. Bi, J. L., Murphy, J. B. & Felton, G. W. Does salicylic acid act as a signal in cotton for induced resistance to Helicoverpa zea?. J. Chem. Ecol. 23, 1805–1818 (1997). [DOI: 10.1023/B]
  42. Mur, L. A. J., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140, 249–262 (2006). [PMID: 16377744]
  43. Kerchev, P. I., Fenton, B., Foyer, C. H. & Hancock, R. D. Plant responses to insect herbivory: Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 35, 441–453 (2012). [PMID: 21752032]
  44. Wu, J. & Baldwin, I. T. Herbivory-induced signalling in plants: Perception and action. Plant Cell Environ. 32, 1161–1174 (2009). [PMID: 19183291]
  45. Lortzing, T. et al. Transcriptomic responses of Solanum dulcamara to natural and simulated herbivory. Mol. Ecol. Resour. 17, e196–e211 (2017). [PMID: 28449359]
  46. Oberländer, J., Lortzing, V., Hilker, M. & Kunze, R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC Plant Biol. 19, 338 (2019). [PMID: 31375063]
  47. Wegener, R., Schulz, S., Meiners, T., Hadwich, K. & Hilker, M. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J. Chem. Ecol. 27, 499–515 (2001). [PMID: 11441441]
  48. Nguyen, D. et al. Interactive responses of Solanum dulcamara to drought and insect feeding are herbivore species-specific. Int. J. Mol. Sci. 19, 3845 (2018). [>PMCID: ]
  49. Appel, H. M. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19, 1521–1552 (1993). [PMID: 24249181]
  50. Lattanzio, V., Kroon, P. A., Quideau, S. & Treutter, D. Plant phenolics—Secondary metabolites with diverse functions. Rec. Adv. Polyphenol Res. 1, 1–35 (2009).
  51. Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chemistry 17, 2806–2816 (2011). [PMID: 21308809]
  52. Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20 (2010). [PMID: 20035037]
  53. War, A. R. et al. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 7, 1306–1320 (2012). [PMID: 22895106]
  54. Yamane, H. et al. 4.08—Chemical defence and toxins of plants. in Comprehensive Natural Products II (2010). https://doi.org/10.1016/B978-008045382-8.00099-X
  55. Austel, N., Eilers, E. J., Meiners, T. & Hilker, M. Elm leaves ‘warned’ by insect egg deposition reduce survival of hatching larvae by a shift in their quantitative leaf metabolite pattern. Plant Cell Environ. 39, 366–376 (2016). [PMID: 26296819]
  56. Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl. Acad. Sci. 112, 6098–6103 (2015). [PMID: 25902509]
  57. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). [PMID: 25605792]
  58. Davis, J. W. Bioinformatics and computational biology solutions using R and Bioconductor. J. Am. Stat. Assoc. https://doi.org/10.1198/jasa.2007.s179 (2009). [DOI: 10.1198/jasa.2007.s179]
  59. Gentleman, R. Bioinformatics and computational biology solutions using R and Bioconductor. J. Am. Stat. Assoc. https://doi.org/10.1007/0-387-29362-0 (2005). [DOI: 10.1007/0-387-29362-0]
  60. R Core Team. R: A Language and Environment for Statistical Computing 55, 275–286 (2015).
  61. Carlson, M. GO.db: A set of annotation maps describing the entire Gene Ontology. R Packag. version 3.4.0. (2016). https://doi.org/10.1016/j.healthplace.2012.12.005
  62. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods https://doi.org/10.1038/nmeth.3252 (2015). [DOI: 10.1038/nmeth.3252]
  63. D’Agostino, N. et al. Genomic analysis of the native European Solanum species S. dulcamara. BMC Genomics 14, 356 (2013). [PMID: 23713999]
  64. Tarca, A. L., Bhatti, G. & Romero, R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS ONE 8, e79217 (2013). [PMID: 24260172]
  65. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). [PMID: 27207943]
  66. Larson, J. et al. Area-Proportional Euler and Venn Diagrams with circles or ellipses. R Packag. version 4.1.0 (2018).
  67. Geiselhardt, S. et al. Egg laying of Cabbage White butterfly (Pieris brassicae ) on Arabidopsis thaliana affects subsequent performance of the larvae. PLoS ONE 8, e59661 (2013). [PMID: 23527243]
  68. Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: Effects on resistance to caterpillars and plant development. Ecology 94, 702–713 (2013). [PMID: 23687896]
  69. Pashalidou, F. G. et al. To be in time: Egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia 177, 477–486 (2015). [PMID: 25273955]
  70. Pashalidou, F. G. et al. Early herbivore alert matters: Plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecol. Lett. 18, 927–936 (2015). [PMID: 26147078]
  71. Fatouros, N. E. et al. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS ONE 7, e43607 (2012). [PMID: 22912893]
  72. Beyaert, I. et al. Can insect egg deposition ‘warn’ a plant of future feeding damage by herbivorous larvae?. Proc. R. Soc. B 279, 101–108 (2012). [PMID: 21561977]

MeSH Term

Animals
Arabidopsis
Gene Expression Regulation, Plant
Insecta
Larva
Lepidoptera
Ovum
Plant Defense Against Herbivory
Solanum
Nicotiana
Transcriptome
Ulmus

Word Cloud

Created with Highcharts 10.0.0eggsresponsesinsectfeedingtranscriptomiclarvaldifferentspeciesconservedplant-insectcombinationsalarmenhanceddefencehatchinglarvaeplantshowgeneArabidopsistobacconightshadeelmanalogoussetsPlantsrespondtranscriptionalchangesresultingHoweverunknownwhetherphylogeneticallydistantsubsequentusedGenerallyApplicableGenesetEnrichmentGAGEontologytermsanswerquestionanalysedtranscriptomedatathalianawildNicotianaattenuatabittersweetSolanumdulcamaratreesUlmusminorinfestedshowedconsiderableoverlapWithinconformableacrosslargelyone-fiftheggdepositionprecededresponsecomprisedrelatedseveralphytohormonesphenylpropanoidbiosynthesispathwayspecificbranchesactivatedSinceactivatebiologicalprocessesconcludeplantslifestylessharecommonlikelyenhancetakeherbivoresimilar

Similar Articles

Cited By