Evidence of cortical thickness reduction and disconnection in high myopia.

Ya-Jun Wu, Na Wu, Xin Huang, Jie Rao, Li Yan, Ling Shi, Hui Huang, Si-Yu Li, Fu-Qing Zhou, Xiao-Rong Wu
Author Information
  1. Ya-Jun Wu: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  2. Na Wu: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  3. Xin Huang: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  4. Jie Rao: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  5. Li Yan: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  6. Ling Shi: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  7. Hui Huang: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  8. Si-Yu Li: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
  9. Fu-Qing Zhou: Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. fq.chou@yahoo.com.
  10. Xiao-Rong Wu: Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. wxr98021@126.com.

Abstract

High myopia (HM) is associated with impaired long-distance vision. accumulating evidences reported that abnormal visual experience leads to dysfunction in brain activity in HM even corrected. However, whether the long-term of abnormal visual experience lead to neuroanatomical changes remain unknown, the aim at this study is to investigate the alternation of cortical surface thickness in HM patients. 82 patients with HM (HM groups), 57 healthy controls (HC groups) were recruited. All participants underwent high-resolution T1 and resting-state functional magnetic resonance imaging (MRI) scans. The cortical thickness analysis was preformed to investigate the neuroanatomical changes in HM patients using computational anatomy toolbox (CAT 12) toolbox. Compare with HCs, HM patients showed decreased the cortical surface thickness in the left middle occipital gyrus (MOG), left inferior parietal lobule (IPL), right inferior temporal gyrus (ITG), right precuneus, right primary visual area 1 (V1), right superior temporal gyrus (STG), right superior parietal lobule (SPL), right occipital pole, and right the primary motor cortex (M1), and increased to the parietal operculum (OP4) (P < 0.01, FWE-corrected), the mean cortical thickness of right orbitofrontal cortex (OFC), right dorsolateral prefrontal cortex (DLPFC) and right subcallosal cortex showed negatively correlation between clinical variables (axis length (ALM), the average macular thickness (AMT), keratometer (KER) 1, KER2, the mean KER, the mean macular fovea thickness (MFK), the refractive diopter) in HM patients. Our result mainly provided an evidence of cortical thickness reduction and disconnection in visual center and visual processing area, and cortical thickness increase in left multimodal integration region in HM patients. This may provide important significance of the study of the neural mechanism of HM.

References

  1. Neurosci Biobehav Rev. 2012 Jan;36(1):341-9 [PMID: 21782846]
  2. Cereb Cortex. 2009 Dec;19(12):2767-96 [PMID: 19329570]
  3. Neuroimage. 2016 Jul 1;134:617-629 [PMID: 27103141]
  4. Mol Med Rep. 2019 Aug;20(2):1707-1715 [PMID: 31257530]
  5. Neuroimage. 2019 Oct 15;200:231-241 [PMID: 31220577]
  6. Neuroimage. 2019 Aug 15;197:255-263 [PMID: 31028920]
  7. Neuroimage. 2011 Jul 15;57(2):462-75 [PMID: 21575727]
  8. Front Neurosci. 2017 Nov 13;11:633 [PMID: 29180950]
  9. Anat Rec. 2001 Jun 1;263(2):215-36 [PMID: 11360237]
  10. Brain Lang. 2019 May;192:1-14 [PMID: 30826643]
  11. Diabetes Res Clin Pract. 2019 Nov;157:107872 [PMID: 31593745]
  12. Neuropsychiatr Dis Treat. 2019 May 09;15:1181-1191 [PMID: 31190826]
  13. Science. 2010 Dec 3;330(6009):1359-64 [PMID: 21071632]
  14. Brain Lang. 2019 Sep;196:104654 [PMID: 31306932]
  15. Curr Sleep Med Rep. 2015 Mar;1(1):64-73 [PMID: 26807347]
  16. Neuroimage. 2000 Apr;11(4):334-40 [PMID: 10725189]
  17. Am J Ophthalmol. 1972 Aug;74(2):219-32 [PMID: 4559896]
  18. Neuroimage. 2009 Aug 1;47(1):98-106 [PMID: 19361567]
  19. Dev Sci. 2016 Jan;19(1):50-62 [PMID: 25754667]
  20. Front Aging Neurosci. 2017 Jul 17;9:225 [PMID: 28769784]
  21. Neuroimage. 2019 Aug 15;197:156-166 [PMID: 31029866]
  22. J Neurosci. 2009 Feb 18;29(7):2205-11 [PMID: 19228973]
  23. Neurobiol Aging. 2012 Mar;33(3):617.e1-9 [PMID: 20739099]
  24. Cereb Cortex. 2013 Mar;23(3):615-28 [PMID: 22375016]
  25. Elife. 2016 Aug 23;5: [PMID: 27549340]
  26. Cereb Cortex. 2020 Mar 21;30(2):607-617 [PMID: 31211363]
  27. Cereb Cortex. 2008 Jan;18(1):136-44 [PMID: 17443018]
  28. J Neurosci. 2007 Nov 21;27(47):13028-32 [PMID: 18032676]
  29. Neuropsychologia. 2014 Nov;64:252-62 [PMID: 25281887]
  30. Vision Res. 2012 Apr;58:45-50 [PMID: 22402232]
  31. Front Psychiatry. 2019 Jun 06;10:381 [PMID: 31244690]
  32. Dev Cogn Neurosci. 2019 Jun;37:100655 [PMID: 31102960]
  33. Cortex. 2019 Aug;117:196-204 [PMID: 30986634]
  34. Front Hum Neurosci. 2019 Jun 11;13:195 [PMID: 31244631]
  35. Transl Psychiatry. 2016 Nov 8;6(11):e942 [PMID: 27824357]
  36. Neuroreport. 2018 Oct 17;29(15):1323-1332 [PMID: 30113921]
  37. J Neuroimaging. 2011 Apr;21(2):e134-47 [PMID: 20412393]
  38. Neuropsychiatr Dis Treat. 2016 Nov 14;12:2949-2956 [PMID: 27881920]
  39. Front Hum Neurosci. 2019 May 22;13:169 [PMID: 31191276]
  40. Behav Brain Res. 2016 Apr 15;303:85-92 [PMID: 26808608]
  41. Asia Pac J Ophthalmol (Phila). 2016 Nov/Dec;5(6):394-402 [PMID: 27898442]
  42. Curr Opin Neurobiol. 2019 Oct;58:1-10 [PMID: 31271931]
  43. Neurol Sci. 2017 Jul;38(7):1279-1286 [PMID: 28439672]
  44. Vision Res. 2019 Jun;159:68-75 [PMID: 30904614]
  45. Neuroimage. 2013 Jan 15;65:336-48 [PMID: 23041529]

MeSH Term

Brain
Brain Cortical Thickness
Case-Control Studies
Female
Functional Neuroimaging
Humans
Magnetic Resonance Imaging
Male
Myopia
Occipital Lobe
Parietal Lobe
Temporal Lobe
Visual Cortex
Young Adult

Word Cloud

Created with Highcharts 10.0.0HMrightthicknesscorticalpatientsvisualcortexleftgyrusparietalmeanmyopiaabnormalexperienceneuroanatomicalstudyinvestigatesurfacegroupstoolboxshowedoccipitalinferiorlobuletemporalprimaryarea1superiormacularKERreductiondisconnectionHighassociatedimpairedlong-distancevisionaccumulatingevidencesreportedleadsdysfunctionbrainactivityevencorrectedHoweverwhetherlong-termleadchanges remainunknownaimalternation8257healthycontrolsHCrecruitedparticipantsunderwenthigh-resolutionT1resting-statefunctionalmagneticresonanceimagingMRIscansanalysispreformedchanges inusingcomputationalanatomyCAT12CompareHCsdecreasedmiddleMOGIPLITGprecuneusV1STGSPLpolemotorM1increasedoperculumOP4P < 001FWE-correctedorbitofrontalOFCdorsolateralprefrontalDLPFCsubcallosalnegativelycorrelationclinicalvariablesaxislengthALMaverageAMTkeratometerKER2foveaMFKrefractivediopterresultmainlyprovidedevidencecenterprocessingincreasemultimodalintegrationregionmayprovideimportantsignificanceneuralmechanismEvidencehigh

Similar Articles

Cited By