Modeling Bronchiolitis Incidence Proportions in the Presence of Spatio-Temporal Uncertainty.

Matthew J Heaton, Candace Berrett, Sierra Pugh, Amber Evans, Chantel Sloan
Author Information
  1. Matthew J Heaton: Department of Statistics, Brigham Young University, Provo, UT.
  2. Candace Berrett: Department of Statistics, Brigham Young University, Provo, UT.
  3. Sierra Pugh: Department of Statistics, Brigham Young University, Provo, UT.
  4. Amber Evans: MPH, Health ResearchTx, LLC, Trevose, PA.
  5. Chantel Sloan: Department of Health Science, Brigham Young University, Provo, UT.

Abstract

bronchiolitis (inflammation of the lower respiratory tract) in infants is primarily due to viral infection and is the single most common cause of infant hospitalization in the United States. To increase epidemiological understanding of bronchiolitis (and, subsequently, develop better prevention strategies), this research analyzes data on infant bronchiolitis cases from the U.S. Military Health System between the years 2003-2013 in Norfolk, Virginia, USA. For privacy reasons, child home addresses, birth dates, and diagnosis dates were randomized (jittered) creating spatio-temporal uncertainty in the geographic location and timing of bronchiolitis incidents. Using spatio-temporal point patterns, we created a modeling strategy that accounts for the jittering to estimate and quantify the uncertainty for the incidence proportion (IP) of bronchiolitis. Additionally, we regress the IP onto key covariates including pollution where we adequately account for uncertainty in the pollution levels (i.e., covariate uncertainty) using a land use regression model. Our analysis results indicate that the IP is positively associated with sulfur dioxide and population density. Further, we demonstrate how scientific conclusions may change if various sources of uncertainty (either spatio-temporal or covariate uncertainty) are not accounted for. Code submitted with this article was checked by an Associate Editor for Reproducibility and is available as an online supplement.

Keywords

References

  1. J Expo Anal Environ Epidemiol. 2005 Mar;15(2):185-204 [PMID: 15292906]
  2. Biostatistics. 2001 Mar;2(1):31-45 [PMID: 12933555]
  3. Biometrics. 2006 Dec;62(4):1197-206 [PMID: 17156295]
  4. Ann Appl Stat. 2008 Oct 8;3(3):943-962 [PMID: 20414368]
  5. Biometrics. 2008 Mar;64(1):262-70 [PMID: 17680833]
  6. Environ Sci Pollut Res Int. 2016 Oct;23(20):20178-20185 [PMID: 27439752]
  7. Environmetrics. 2012 Nov 1;23(7):565-578 [PMID: 24077640]
  8. Spat Stat. 2012 Dec 1;2:15-32 [PMID: 24010051]
  9. Pediatr Infect Dis J. 2013 Sep;32(9):950-5 [PMID: 23694832]
  10. J Infect Dis. 2001 Jan 1;183(1):16-22 [PMID: 11076709]
  11. Int J Health Geogr. 2014 Nov 20;13:47 [PMID: 25410053]
  12. J Infect Dis. 1997 Apr;175(4):814-20 [PMID: 9086135]
  13. Air Qual Atmos Health. 2013 Mar;6(1):69-83 [PMID: 23450182]
  14. J Allergy Clin Immunol. 2004 Aug;114(2):239-47 [PMID: 15316497]
  15. Clin Infect Dis. 2012 May;54(10):1427-36 [PMID: 22495079]
  16. Arch Pediatr Adolesc Med. 2011 Jun;165(6):498-505 [PMID: 21300647]
  17. J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848 [PMID: 19750209]
  18. Lancet. 2010 May 1;375(9725):1545-55 [PMID: 20399493]
  19. Atmos Environ (1994). 2011 Aug 1;45(26):4412-4420 [PMID: 21808599]
  20. Emerg Infect Dis. 2015 Sep;21(9):1602-10 [PMID: 26292106]
  21. Environmetrics. 2009 Sep 1;21(6):606-631 [PMID: 24860253]
  22. Environ Ecol Stat. 2014 Sep;21(3):411-433 [PMID: 25264424]
  23. J Pediatr. 2006 Sep;149(3):373-7 [PMID: 16939750]
  24. J Med Virol. 2016 Jun;88(6):931-7 [PMID: 26575521]

Grants

  1. R03 ES025295/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0uncertaintybronchiolitisspatio-temporalIPBronchiolitisinfantdatespollutioncovariateinflammationlowerrespiratorytractinfantsprimarilydueviralinfectionsinglecommoncausehospitalizationUnitedStatesincreaseepidemiologicalunderstandingsubsequentlydevelopbetterpreventionstrategiesresearchanalyzesdatacasesUSMilitaryHealthSystemyears2003-2013NorfolkVirginiaUSAprivacyreasonschildhomeaddressesbirthdiagnosisrandomizedjitteredcreatinggeographiclocationtimingincidentsUsingpointpatternscreatedmodelingstrategyaccountsjitteringestimatequantifyincidenceproportionAdditionallyregressontokeycovariatesincludingadequatelyaccountlevelsieusinglanduseregressionmodelanalysisresultsindicatepositivelyassociatedsulfurdioxidepopulationdensitydemonstratescientificconclusionsmaychangevarioussourceseitheraccountedCodesubmittedarticlecheckedAssociateEditorReproducibilityavailableonlinesupplementModelingIncidenceProportionsPresenceSpatio-TemporalUncertaintyDimensionreductionMeasurementerrorRespiratorysyncytialvirusSpatialstatistics

Similar Articles

Cited By (2)