The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes.

Jinge Liu, Xiaocheng Yu, Qiulin Qin, Randy D Dinkins, Hongyan Zhu
Author Information
  1. Jinge Liu: Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
  2. Xiaocheng Yu: Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
  3. Qiulin Qin: Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
  4. Randy D Dinkins: Forage-Animal Production Research Unit, United States Department of Agriculture-Agricultural Research Service, Lexington, KY, United States.
  5. Hongyan Zhu: Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.

Abstract

Legumes are the second most important family of crop plants. One defining feature of legumes is their unique ability to establish a nitrogen-fixing root nodule symbiosis with soil bacteria known as rhizobia. Since domestication from their wild relatives, crop legumes have been under intensive breeding to improve yield and other agronomic traits but with little attention paid to the belowground symbiosis traits. Theoretical models predict that domestication and breeding processes, coupled with high-input agricultural practices, might have reduced the capacity of crop legumes to achieve their full potential of nitrogen fixation symbiosis. Testing this prediction requires characterizing symbiosis traits in wild and breeding populations under both natural and cultivated environments using genetic, genomic, and ecological approaches. However, very few experimental studies have been dedicated to this area of research. Here, we review how legumes regulate their interactions with soil rhizobia and how domestication, breeding and agricultural practices might have affected nodulation capacity, nitrogen fixation efficiency, and the composition and function of rhizobial community. We also provide a perspective on how to improve legume-rhizobial symbiosis in sustainable agricultural systems.

Keywords

References

  1. Nat Commun. 2014 Jun 10;5:4087 [PMID: 24912610]
  2. Evolution. 2015 Mar;69(3):631-42 [PMID: 25565449]
  3. FEMS Microbiol Lett. 2019 Sep 1;366(18): [PMID: 31730203]
  4. Nat Rev Microbiol. 2018 May;16(5):291-303 [PMID: 29379215]
  5. Curr Biol. 2014 Mar 3;24(5):R184-90 [PMID: 24602880]
  6. Cell Microbiol. 2020 Jan;22(1):e13124 [PMID: 31610071]
  7. J Biosci. 2014 Jun;39(3):513-7 [PMID: 24845514]
  8. PLoS Genet. 2015 Jun 04;11(6):e1005280 [PMID: 26042417]
  9. Science. 2018 Jul 13;361(6398): [PMID: 29794220]
  10. Cell Microbiol. 2012 Mar;14(3):334-42 [PMID: 22168434]
  11. Plant Cell. 2002;14 Suppl:S239-49 [PMID: 12045280]
  12. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  13. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10282-7 [PMID: 17548832]
  14. Microb Ecol. 2018 Aug;76(2):299-302 [PMID: 29330647]
  15. Front Microbiol. 2014 Aug 26;5:415 [PMID: 25206350]
  16. ISME J. 2020 Aug;14(8):1915-1928 [PMID: 32336748]
  17. New Phytol. 2017 Apr;214(1):412-423 [PMID: 27879004]
  18. Trends Plant Sci. 2019 Jan;24(1):49-57 [PMID: 30409687]
  19. Nat Commun. 2018 Feb 13;9(1):649 [PMID: 29440741]
  20. Nat Rev Genet. 2014 Dec;15(12):797-813 [PMID: 25266034]
  21. Front Microbiol. 2017 Nov 09;8:2207 [PMID: 29170661]
  22. Curr Opin Plant Biol. 2018 Aug;44:129-136 [PMID: 29684704]
  23. Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15200-15209 [PMID: 31285337]
  24. Sci Rep. 2017 May 3;7(1):1419 [PMID: 28469244]
  25. Front Microbiol. 2019 Sep 04;10:2041 [PMID: 31551977]
  26. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6854-6859 [PMID: 28607058]
  27. Proc Natl Acad Sci U S A. 2018 May 15;115(20):E4700-E4709 [PMID: 29717040]
  28. Nat Rev Microbiol. 2009 Apr;7(4):312-20 [PMID: 19270720]
  29. PLoS One. 2019 Sep 13;14(9):e0222469 [PMID: 31518373]
  30. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13548-53 [PMID: 15340138]
  31. Nature. 2002 Nov 28;420(6914):422-6 [PMID: 12442170]
  32. Trends Ecol Evol. 2020 May;35(5):426-439 [PMID: 32294424]
  33. Microbiome. 2019 Aug 14;7(1):114 [PMID: 31412927]
  34. Nat Commun. 2018 Aug 7;9(1):3139 [PMID: 30087346]
  35. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18735-40 [PMID: 20937853]
  36. Eur J Biochem. 2003 Apr;270(7):1365-80 [PMID: 12653992]
  37. Nature. 2015 Jul 16;523(7560):308-12 [PMID: 26153863]
  38. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005 [PMID: 27864511]
  39. Annu Rev Genet. 2011;45:119-44 [PMID: 21838550]
  40. Plant Physiol. 2016 Jan;170(1):26-32 [PMID: 26582727]
  41. Nature. 2003 Sep 4;425(6953):78-81 [PMID: 12955144]
  42. ISME J. 2017 Oct;11(10):2244-2257 [PMID: 28585939]
  43. Science. 2003 Jan 3;299(5603):109-12 [PMID: 12411574]
  44. Front Plant Sci. 2018 Mar 09;9:313 [PMID: 29593768]
  45. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  46. Appl Environ Microbiol. 2015 Oct;81(19):6710-7 [PMID: 26187957]
  47. Plant Cell Environ. 2019 Jan;42(1):41-51 [PMID: 29808564]
  48. Heredity (Edinb). 2016 Aug;117(2):84-93 [PMID: 27118154]
  49. Proc Natl Acad Sci U S A. 2020 May 5;117(18):9822-9831 [PMID: 32317381]
  50. Cell Host Microbe. 2015 Mar 11;17(3):392-403 [PMID: 25732064]
  51. Nat Commun. 2018 Feb 5;9(1):499 [PMID: 29403008]
  52. Annu Rev Genet. 2016 Nov 23;50:211-234 [PMID: 27648643]
  53. Front Microbiol. 2017 May 30;8:973 [PMID: 28611764]
  54. Evol Lett. 2018 Apr 13;2(3):233-245 [PMID: 30283679]
  55. Cell Host Microbe. 2015 May 13;17(5):603-16 [PMID: 25974302]
  56. Microbiome. 2018 Aug 16;6(1):143 [PMID: 30115122]
  57. Adv Microb Physiol. 2012;60:325-89 [PMID: 22633062]
  58. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10262-9 [PMID: 26041807]
  59. Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712): [PMID: 27920378]
  60. BMC Plant Biol. 2014 Jun 16;14:167 [PMID: 24934080]
  61. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6848-6853 [PMID: 28607056]
  62. Mol Ecol. 2004 Aug;13(8):2435-44 [PMID: 15245415]

Word Cloud

Created with Highcharts 10.0.0symbiosislegumesdomesticationbreedingcroprhizobiatraitsagriculturalnitrogenfixationLegumessoilwildimprovepracticesmightcapacitynodulationsecondimportantfamilyplantsOnedefiningfeatureuniqueabilityestablishnitrogen-fixingrootnodulebacteriaknownSincerelativesintensiveyieldagronomiclittleattentionpaidbelowgroundTheoreticalmodelspredictprocessescoupledhigh-inputreducedachievefullpotentialTestingpredictionrequirescharacterizingpopulationsnaturalcultivatedenvironmentsusinggeneticgenomicecologicalapproachesHoweverexperimentalstudiesdedicatedarearesearchreviewregulateinteractionsaffectedefficiencycompositionfunctionrhizobialcommunityalsoprovideperspectivelegume-rhizobialsustainablesystemsImpactsDomesticationBreedingNitrogenFixationSymbiosislegume

Similar Articles

Cited By