A C. elegans model for neurodegeneration in Cockayne syndrome.

Amanda F C Lopes, Katarzyna Bozek, Marija Herholz, Aleksandra Trifunovic, Matthias Rieckher, Björn Schumacher
Author Information
  1. Amanda F C Lopes: Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
  2. Katarzyna Bozek: Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.
  3. Marija Herholz: Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
  4. Aleksandra Trifunovic: Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
  5. Matthias Rieckher: Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
  6. Björn Schumacher: Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.

Abstract

Cockayne syndrome (CS) is a congenital syndrome characterized by growth and mental retardation, and premature ageing. The complexity of CS and mammalian models warrants simpler metazoan models that display CS-like phenotypes that could be studied in the context of a live organism. Here, we provide a characterization of neuronal and mitochondrial aberrations caused by a mutation in the csb-1 gene in Caenorhabditis elegans. We report a progressive neurodegeneration in adult animals that is enhanced upon UV-induced DNA damage. The csb-1 mutants show dysfunctional hyperfused mitochondria that degrade upon DNA damage, resulting in diminished respiratory activity. Our data support the role of endogenous DNA damage as a driving factor of CS-related neuropathology and underline the role of mitochondrial dysfunction in the disease.

References

  1. Nat Methods. 2018 Sep;15(9):645-646 [PMID: 30171234]
  2. J Neurosci. 2015 Mar 11;35(10):4280-6 [PMID: 25762674]
  3. Cell Death Differ. 2013 Dec;20(12):1709-18 [PMID: 24013725]
  4. Genet Med. 2016 May;18(5):483-93 [PMID: 26204423]
  5. PLoS Genet. 2010 May 06;6(5):e1000941 [PMID: 20463888]
  6. Cell. 1993 Aug 13;74(3):515-27 [PMID: 8348618]
  7. DNA Repair (Amst). 2002 Feb 28;1(2):143-57 [PMID: 12509261]
  8. PLoS Genet. 2011 Dec;7(12):e1002405 [PMID: 22174697]
  9. Antioxid Redox Signal. 2011 May 15;14(10):1939-51 [PMID: 21128700]
  10. J Exp Biol. 2012 Oct 15;215(Pt 20):3639-48 [PMID: 22811252]
  11. Commun Integr Biol. 2011 Nov 1;4(6):696-8 [PMID: 22446530]
  12. FEBS Lett. 2002 Jul 3;522(1-3):47-51 [PMID: 12095617]
  13. PLoS Biol. 2007 Jan;5(1):e2 [PMID: 17326724]
  14. Cell. 1997 May 2;89(3):425-35 [PMID: 9150142]
  15. Mech Ageing Dev. 2009 Sep;130(9):619-36 [PMID: 19647012]
  16. J Cell Physiol. 2018 Apr;233(4):2781-2790 [PMID: 28463453]
  17. J Neurosci. 2011 Jun 22;31(25):9279-88 [PMID: 21697377]
  18. DNA Repair (Amst). 2008 Jul 1;7(7):1155-67 [PMID: 18456575]
  19. DNA Repair (Amst). 2014 Dec;24:57-62 [PMID: 25453470]
  20. Nat Cell Biol. 2005 Mar;7(3):278-85 [PMID: 15696159]
  21. Mol Biol Cell. 1992 Nov;3(11):1199-213 [PMID: 1457827]
  22. Neuron. 1991 Nov;7(5):729-42 [PMID: 1660283]
  23. J Neurosci. 2014 May 7;34(19):6522-36 [PMID: 24806678]
  24. Mol Cell Biol. 2000 Mar;20(5):1562-70 [PMID: 10669734]
  25. Mech Ageing Dev. 2017 Jan;161(Pt A):4-18 [PMID: 27041231]
  26. Sci Data. 2017 Oct 19;4:170156 [PMID: 29047458]
  27. Exp Mol Med. 2016 Oct 7;48(10):e263 [PMID: 27713398]
  28. Curr Biol. 2014 Mar 31;24(7):760-5 [PMID: 24631238]
  29. Cell. 2012 Aug 17;150(4):855-66 [PMID: 22901814]
  30. J Child Neurol. 2006 Nov;21(11):991-1006 [PMID: 17092472]
  31. J Neurosci. 2016 Jan 27;36(4):1373-85 [PMID: 26818523]
  32. Ageing Res Rev. 2017 Jan;33:3-17 [PMID: 27507608]
  33. J Neurosci. 1985 Apr;5(4):956-64 [PMID: 3981252]
  34. PLoS One. 2013;8(1):e53419 [PMID: 23301069]
  35. Mech Ageing Dev. 2013 May-Jun;134(5-6):275-83 [PMID: 23435289]
  36. Bio Protoc. 2017 Oct 5;7(19): [PMID: 29071286]
  37. J Neurosci. 2015 Feb 4;35(5):2200-12 [PMID: 25653375]
  38. Genetics. 2006 Sep;174(1):229-39 [PMID: 16816413]
  39. Nat Protoc. 2016 Oct;11(10):1798-816 [PMID: 27583642]
  40. Genetics. 1974 May;77(1):71-94 [PMID: 4366476]
  41. WormBook. 2014 Jul 31;: [PMID: 25093996]
  42. Am J Med Genet. 1992 Jan 1;42(1):68-84 [PMID: 1308368]
  43. Nat Cell Biol. 2014 Dec;16(12):1168-1179 [PMID: 25419847]
  44. DNA Repair (Amst). 2017 Jun;54:55-62 [PMID: 28472716]
  45. Aging Cell. 2020 Dec;19(12):e13268 [PMID: 33166073]
  46. Nucleic Acids Res. 2018 Jul 6;46(12):6129-6139 [PMID: 29788264]
  47. Hum Mol Genet. 2000 Apr 12;9(6):869-77 [PMID: 10767309]
  48. Pflugers Arch. 2015 Jan;467(1):39-48 [PMID: 25053538]
  49. J Exp Med. 2012 Apr 9;209(4):855-69 [PMID: 22473955]
  50. J Neurosci. 2012 Jun 27;32(26):8778-90 [PMID: 22745480]
  51. DNA Repair (Amst). 2016 May;41:8-15 [PMID: 27043179]
  52. DNA Repair (Amst). 2002 Dec 5;1(12):1027-38 [PMID: 12531012]

MeSH Term

Animals
Caenorhabditis elegans
Cockayne Syndrome
DNA Damage
DNA Repair
DNA Repair Enzymes
Disease Models, Animal
Mitochondria
Mutation
Poly-ADP-Ribose Binding Proteins

Chemicals

Poly-ADP-Ribose Binding Proteins
DNA Repair Enzymes

Word Cloud

Created with Highcharts 10.0.0syndromeDNAdamageCockayneCSmodelsmitochondrialcsb-1elegansneurodegenerationuponrolecongenitalcharacterizedgrowthmentalretardationprematureageingcomplexitymammalianwarrantssimplermetazoandisplayCS-likephenotypesstudiedcontextliveorganismprovidecharacterizationneuronalaberrationscausedmutationgeneCaenorhabditisreportprogressiveadultanimalsenhancedUV-inducedmutantsshowdysfunctionalhyperfusedmitochondriadegraderesultingdiminishedrespiratoryactivitydatasupportendogenousdrivingfactorCS-relatedneuropathologyunderlinedysfunctiondiseaseCmodel

Similar Articles

Cited By