Development of novel microsatellite markers using RAD sequencing technology for diversity assessment of rambutan () germplasm.

Shahril Ab Razak, Salehudin Mad Radzuan, Norkhairi Mohamed, Nor Helwa Ezzah Nor Azman, Alny Marlynni Abd Majid, Siti Norhayati Ismail, Muhammad Fairuz Mohd Yusof, Johari Sarip, Khairun Hisam Nasir
Author Information
  1. Shahril Ab Razak: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  2. Salehudin Mad Radzuan: Horticulture Research Centre, MARDI Sintok, 06050, Bukit Kayu Hitam, Kedah, Malaysia.
  3. Norkhairi Mohamed: Department of Agriculture, Hulu Paka Agricultural Centre, 23300, Dungun, Terengganu, Malaysia.
  4. Nor Helwa Ezzah Nor Azman: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  5. Alny Marlynni Abd Majid: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  6. Siti Norhayati Ismail: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  7. Muhammad Fairuz Mohd Yusof: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  8. Johari Sarip: Horticulture Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
  9. Khairun Hisam Nasir: Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.

Abstract

The trend of microsatellite marker discovery and development revolved as a result of the advancement of next generation sequencing (NGS) technology as it has developed numerous microsatellites within a short period of time at a low cost. This study generated microsatellite markers using RAD sequencing technologies for the understudied . A total of 1403 microsatellite markers were successfully designed, which consisted of 853 di-, 525 tri-, 17 tetra-, 5 penta-, and 3 hexanucleotide microsatellite markers. Subsequently, selection of 39 microsatellites was made for the evaluation of genetic diversity of the selected 22 rambutan varieties. Twelve microsatellites, which exhibited high call rates across the samples, were used to assess the diversity of the aforementioned rambutan varieties. The analysis of 12 microsatellites revealed the presence of 72 alleles and six alleles per locus in average. Furthermore, the polymorphic information content (PIC) value ranged from 0.326 (NlaSSR20) to 0.832 (NlaSSR32), which included an average of 0.629 per locus, while the generated Neighbour Joining dendrogram showed two major clusters. The pairwise genetic distance of shared alleles exhibited a range of values from 0.046 (R134↔R170) to 0.818 (R5↔R170), which suggested highest dissimilarity detected between R5 and R170. Notably, these research findings would useful for varietal identification, proper management and conservation of the genetic resources, and exploitation and utilization in future breeding programs.

Keywords

References

  1. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  2. Bioinformatics. 2011 Aug 15;27(16):2187-93 [PMID: 21712251]
  3. Appl Plant Sci. 2016 Nov 4;4(11): [PMID: 27843726]
  4. Mol Ecol Resour. 2011 Jul;11(4):591-611 [PMID: 21565126]
  5. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  6. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  7. Ecol Lett. 2006 May;9(5):615-29 [PMID: 16643306]
  8. PLoS One. 2015 Nov 11;10(11):e0142602 [PMID: 26561396]
  9. Bioinformatics. 2012 Oct 1;28(19):2537-9 [PMID: 22820204]
  10. Bioinformatics. 2005 May 1;21(9):2128-9 [PMID: 15705655]
  11. Plant Methods. 2016 Aug 04;12:39 [PMID: 27493679]
  12. Appl Plant Sci. 2016 Jun 16;4(6): [PMID: 27347456]
  13. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  14. Am J Bot. 2012 Feb;99(2):193-208 [PMID: 22186186]
  15. Nat Biotechnol. 2000 Feb;18(2):233-4 [PMID: 10657137]
  16. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  17. Mol Ecol. 2016 Jul;25(13):2997-3018 [PMID: 26971882]
  18. Plant Divers. 2017 Jun 02;39(5):294-299 [PMID: 30159522]
  19. PLoS One. 2012;7(2):e30953 [PMID: 22348032]
  20. Mol Ecol. 2002 Jan;11(1):1-16 [PMID: 11903900]
  21. Mol Ecol. 2013 Jun;22(11):3124-40 [PMID: 23701397]
  22. Genet Mol Res. 2010 Feb 09;9(1):259-65 [PMID: 20198581]
  23. Nucleic Acids Res. 2012 Nov 1;40(20):e155 [PMID: 22821567]
  24. PLoS One. 2008;3(10):e3376 [PMID: 18852878]
  25. Mol Ecol Resour. 2017 May;17(3):481-491 [PMID: 27488693]

Word Cloud

Created with Highcharts 10.0.0microsatellite0sequencingmicrosatellitesmarkersRADgeneticdiversityrambutanallelesbiologymarkertechnologygeneratedusingvarietiesexhibitedperlocusaveragebreedingtrenddiscoverydevelopmentrevolvedresultadvancementnextgenerationNGSdevelopednumerouswithinshortperiodtimelowcoststudytechnologiesunderstudiedtotal1403successfullydesignedconsisted853di-525tri-17tetra-5penta-3hexanucleotideSubsequentlyselection39madeevaluationselected22Twelvehighcallratesacrosssamplesusedassessaforementionedanalysis12revealedpresence72sixFurthermorepolymorphicinformationcontentPICvalueranged326NlaSSR20832NlaSSR32included629NeighbourJoiningdendrogramshowedtwomajorclusterspairwisedistancesharedrangevalues046R134↔R170818R5↔R170suggestedhighestdissimilaritydetectedR5R170NotablyresearchfindingsusefulvarietalidentificationpropermanagementconservationresourcesexploitationutilizationfutureprogramsDevelopmentnovelassessmentgermplasmAgriculturalsciencesBiotechnologyCropEvolutionaryGeneticsHorticultureMolecularNepheliumlappaceumPlantSSR

Similar Articles

Cited By