Clustered Lysine Residues of the Canine Distemper Virus Matrix Protein Regulate Membrane Association and Budding Activity.

Nicole P Kadzioch, Matthieu Gast, Francesco Origgi, Philippe Plattet
Author Information
  1. Nicole P Kadzioch: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  2. Matthieu Gast: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  3. Francesco Origgi: Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  4. Philippe Plattet: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland philippe.plattet@vetsuisse.unibe.ch. ORCID

Abstract

The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity. Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.

Keywords

References

  1. Arch Virol. 2010 Sep;155(9):1503-8 [PMID: 20625777]
  2. mBio. 2013 Jul 02;4(4): [PMID: 23820396]
  3. J Gen Virol. 2020 Jan;101(1):44-58 [PMID: 31793855]
  4. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4441-6 [PMID: 19251668]
  5. Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2012-2020 [PMID: 28711356]
  6. Nature. 2011 Nov 02;480(7378):530-3 [PMID: 22048310]
  7. J Virol. 2009 Oct;83(20):10374-83 [PMID: 19656884]
  8. PLoS Pathog. 2010 Nov 11;6(11):e1001186 [PMID: 21085610]
  9. J Virol. 2015 Apr;89(8):4624-35 [PMID: 25673702]
  10. J Virol. 1992 May;66(5):3263-9 [PMID: 1560547]
  11. Int J Biochem Cell Biol. 2010 Sep;42(9):1416-29 [PMID: 20398786]
  12. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  13. Nature. 2000 Aug 24;406(6798):893-7 [PMID: 10972291]
  14. J Virol. 2001 Jul;75(13):5842-50 [PMID: 11390585]
  15. J Virol. 2007 Jul;81(13):6827-36 [PMID: 17442724]
  16. Viruses. 2016 Apr 21;8(4):112 [PMID: 27110811]
  17. J Gen Virol. 2018 Dec;99(12):1614-1620 [PMID: 30394868]
  18. J Gen Virol. 2005 Jun;86(Pt 6):1753-1757 [PMID: 15914854]
  19. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13996-4000 [PMID: 22891297]
  20. J Virol. 2014 Jun;88(11):6158-67 [PMID: 24648460]
  21. J Gen Virol. 2006 Jul;87(Pt 7):2021-2029 [PMID: 16760405]
  22. J Biol Chem. 2018 Mar 2;293(9):3335-3349 [PMID: 29348171]
  23. Curr Opin Virol. 2017 Jun;24:105-114 [PMID: 28601688]
  24. Virology. 1993 Aug;195(2):596-607 [PMID: 8337834]
  25. J Neurosci. 2005 Feb 23;25(8):2002-9 [PMID: 15728840]
  26. J Gen Virol. 2007 Apr;88(Pt 4):1243-1250 [PMID: 17374768]
  27. PLoS Pathog. 2015 May 06;11(5):e1004880 [PMID: 25946112]
  28. Virology. 2004 Jul 20;325(1):1-10 [PMID: 15231380]
  29. J Mol Biol. 2000 Jun 30;300(1):103-12 [PMID: 10864502]
  30. Virus Res. 2007 Nov;129(2):145-54 [PMID: 17706826]
  31. J Virol Methods. 2013 Dec;194(1-2):118-22 [PMID: 23994149]
  32. Cell Microbiol. 2007 May;9(5):1203-14 [PMID: 17217427]
  33. J Gen Virol. 2019 Dec;100(12):1593-1594 [PMID: 31609197]
  34. PLoS One. 2014 May 13;9(5):e97233 [PMID: 24823948]
  35. J Virol. 1999 Jan;73(1):251-9 [PMID: 9847328]
  36. J Virol. 2018 Aug 29;92(18): [PMID: 29997204]
  37. J Virol. 1986 Feb;57(2):678-83 [PMID: 3003398]
  38. Nat Struct Mol Biol. 2013 Jan;20(1):67-72 [PMID: 23202587]
  39. J Virol. 2013 Apr;87(8):4756-61 [PMID: 23388720]
  40. Virology. 2015 May;479-480:518-31 [PMID: 25771804]
  41. J Vet Med Sci. 2004 Apr;66(4):409-15 [PMID: 15133271]
  42. Virology. 2013 Feb 5;436(1):210-20 [PMID: 23260107]
  43. Structure. 2014 Jan 7;22(1):136-48 [PMID: 24316400]
  44. J Biol Chem. 2012 May 11;287(20):16324-34 [PMID: 22431728]
  45. J Virol. 2010 Sep;84(18):9618-24 [PMID: 20631152]
  46. Langmuir. 2011 Jan 4;27(1):304-11 [PMID: 21141948]
  47. Sci Rep. 2016 Jan 12;6:19125 [PMID: 26753796]
  48. Arch Virol. 2019 Jul;164(7):1967-1980 [PMID: 31089958]
  49. Nat Commun. 2018 Apr 30;9(1):1736 [PMID: 29712906]
  50. Biochemistry. 2005 Sep 27;44(38):12887-95 [PMID: 16171404]
  51. J Virol. 2013 Sep;87(18):10401-4 [PMID: 23864629]
  52. Virol J. 2013 Aug 02;10:249 [PMID: 23914985]
  53. Virus Res. 2002 Feb 26;83(1-2):1-12 [PMID: 11864737]
  54. J Mol Graph Model. 2018 Jun;82:137-144 [PMID: 29730487]
  55. Virol J. 2007 Jan 04;4:1 [PMID: 17204159]
  56. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18085-90 [PMID: 22025713]
  57. J Virol. 2009 Jun;83(11):5353-62 [PMID: 19297465]
  58. J Virol. 2012 Sep;86(18):10207-10 [PMID: 22761370]
  59. PLoS Pathog. 2015 Mar 17;11(3):e1004739 [PMID: 25782006]
  60. EMBO J. 2001 Aug 1;20(15):4024-34 [PMID: 11483506]
  61. FEBS Lett. 2016 Aug;590(15):2494-511 [PMID: 27350027]
  62. Trends Microbiol. 2012 Sep;20(9):429-39 [PMID: 22721863]
  63. Biochem Biophys Res Commun. 2007 Apr 20;355(4):1096-101 [PMID: 17336269]
  64. Nat Rev Drug Discov. 2006 Feb;5(2):107-14 [PMID: 16518378]
  65. EMBO J. 2000 Jul 17;19(14):3576-85 [PMID: 10899112]
  66. EMBO J. 1998 Jul 15;17(14):3899-908 [PMID: 9670007]
  67. J Virol. 2018 Jun 13;92(13): [PMID: 29695428]
  68. J Virol. 2017 Jul 27;91(16): [PMID: 28592541]
  69. Virus Res. 2004 Dec;106(2):133-45 [PMID: 15567493]
  70. J Virol. 2001 Dec;75(23):11384-91 [PMID: 11689619]
  71. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3018-27 [PMID: 23027974]
  72. J Biol Chem. 2012 Nov 9;287(46):38543-51 [PMID: 23007387]
  73. J Virol. 2013 Feb;87(4):1974-84 [PMID: 23221571]
  74. J Virol. 2015 Dec 30;90(6):3074-85 [PMID: 26719280]

MeSH Term

Animals
Cell Membrane
Cytosol
Distemper Virus, Canine
Dogs
HEK293 Cells
Humans
Lysine
Madin Darby Canine Kidney Cells
Mutation
Proteasome Inhibitors
Protein Folding
Protein Interaction Domains and Motifs
Ubiquitination
Viral Matrix Proteins
Virion
Virus Assembly
Virus Release

Chemicals

Proteasome Inhibitors
Viral Matrix Proteins
Lysine

Word Cloud

Created with Highcharts 10.0.0MCDVPMvirallysineresiduesbuddingmembraneVLPproductionvirusmatrixproteinmayactivityselectedsurface-exposedbasicpatchinteractioncellvariantsassociationmorbillivirusescaninedistemperassemblyformationsupportfunctionsassembleC-terminalCTDrespectivelyinvestigateinteractionsplasmachargedlocatedwithinaminoacidsexhibitedidentifiedmultipleantiviraldrugegresscellularmultifunctionalorchestratesdrivesvirus-likeparticlesVLPsregulatesRNAsynthesisadditionaldimersprotomerconstitutedN-terminaldomainsNTDwhetherelectrostaticcontributepositivelylargereplacedpropertiesfoundmutantsharboringneutralpositivechargemethionineargininemaintainedfullfunctionalityincludingproperlocalizationwellintactprogenydemonstratedemployingexit-complementationsystemConverselyoverallstructuralintegrityremainedmostlyunalterednonconservativecarryingglutamicacidnegativelycytosolicphenotypesecondarylackConsequentlyentirelydefectiveparticleFurthermoreproteasomeinhibitorbortezomibsignificantlyreducedwild-typeM-mediatedNeverthelessabsencecompoundengineeredunaffectedubiquitinationprofilesconsistentlikelyinvolvedfunctionallyessentialposttranslationalmodificationAltogetherdataM-CTDcriticallycontributingensuingAlthoughvaccinesexistinfectionsstilloccurcanresultdramaticbraindiseasefataloutcomePostexposureprophylaxisantiviralsglobalvaccinationcampaignsUnfortunatelyefficientcurrentlyapprovedcoordinatescomponentsHowevermolecularmechanismssupportingremainpoorlyunderstoodprecluderationaledesigninhibitorspotentialcombinedstructure-guidedmutagenesisbiochemicalvirologicalassaysseverallysinesclusteringmicrodomaindomaincontributedfindingsprovidenovelmechanisticinformationinfectedcellstherebydeliveringbasesfuturedevelopmentClusteredLysineResiduesCanineDistemperVirusMatrixProteinRegulateMembraneAssociationBuddingActivityMorbillivirusexitperipheryaccumulation

Similar Articles

Cited By (4)