Bayesian inference using Hamiltonian Monte-Carlo algorithm for nonlinear joint modeling in the context of cancer immunotherapy.

Marion Kerioui, Francois Mercier, Julie Bertrand, Coralie Tardivon, René Bruno, Jérémie Guedj, Solène Desmée
Author Information
  1. Marion Kerioui: Université de Paris, INSERM, IAME, F-75006 Paris, France. ORCID
  2. Francois Mercier: Biostatistics - Roche Innovation Center Basel, Basel, Switzerland. ORCID
  3. Julie Bertrand: Université de Paris, INSERM, IAME, F-75006 Paris, France.
  4. Coralie Tardivon: Université de Paris, INSERM, IAME, F-75006 Paris, France.
  5. René Bruno: Genentech/Roche - Service de Pharmacologie Clinique, Marseille, France.
  6. Jérémie Guedj: Université de Paris, INSERM, IAME, F-75006 Paris, France.
  7. Solène Desmée: Université de Tours, Université de Nantes, INSERM SPHERE, UMR 1246, Tours, France.

Abstract

Treatment evaluation in advanced cancer mainly relies on overall survival and tumor size dynamics. Both markers and their association can be simultaneously analyzed by using joint models, and these approaches are supported by many softwares or packages. However, these approaches are essentially limited to linear models for the longitudinal part, which limit their biological interpretation. More biological models of tumor dynamics can be obtained by using nonlinear models, but they are limited by the fact that parameter identifiability require rich dataset. In that context Bayesian approaches are particularly suited to incorporate the biological knowledge and increase the information available, but they are limited by the high computing cost of Monte-Carlo by Markov Chains algorithms. Here, we aimed to assess the performances of the Hamiltonian Monte-Carlo (HMC) algorithm implemented in Stan for inference in a nonlinear joint model. The method was validated on simulated data where HMC provided proper posterior distributions and credibility intervals in a reasonable computational time. Then the association between tumor size dynamics and survival was assessed in patients with advanced or metastatic bladder cancer treated with atezolizumab, an immunotherapy agent. HMC confirmed limited sensitivity to prior distributions. A cross-validation approach was developed and identified the current slope of tumor size dynamics as the most relevant driver of survival. In summary, HMC is an efficient approach to perform nonlinear joint models in a Bayesian framework, and opens the way for the use of nonlinear models to characterize both the rapid dynamics and the intersubject variability observed during cancer immunotherapy treatment.

Keywords

References

  1. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin. 2004;14(3):809-834.
  2. Wu L, Liu W, Yi GY, Huang Y. Analysis of longitudinal and survival data: joint modeling, inference methods, and issues. J Probab Stat. 2012;2012:640153 17pages.
  3. Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;53(1):330-339.
  4. Sudell M, Kolamunnage-Dona R, Tudur-Smith C. Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis. BMC Med Res Methodol. 2016;16(1):168.
  5. Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. Boca Raton, FL: Chapman & Hall/CRC Press; 2012.
  6. Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw (Online). 2010;35(9):1-33.
  7. Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J Stat Softw. 2017;78(2). http://dx.doi.org/10.18637/jss.v078.i02.
  8. Zhang D, Chen MH, Ibrahim JG, Boye ME, Shen W. JMFit: a SAS macro for joint models of longitudinal and survival data. J Stat Softw. 2016;71(3). http://dx.doi.org/10.18637/jss.v071.i03.
  9. Yin A, Moes DJA, Van Hasselt JG, Swen JJ, Guchelaar H-J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometr Syst Pharmacol. 2019;8(10):720-737.
  10. Bruno R, Bottino D, de Alwis DP, et al. Progress and opportunities to advance clinical cancer therapeutics using tumor dynamic models. Clin Cancer Res. 2020;26(8):1787-1795. http://dx.doi.org/10.1158/1078-0432.ccr-19-0287.
  11. Desmée S, Mentré F, Veyrat-Follet C, Sébastien B, Guedj J. Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients. Biometrics. 2016;73(1):305.
  12. Mbogning C, Bleakley K, Lavielle M. Joint modelling of longitudinal and repeated time-to-event data using nonlinear mixed-effects models and the stochastic approximation expectation-maximization algorithm. J Stat Comput Simul. 2015;85(8):1515-1528.
  13. Tardivon C, Desmée S, Kerioui M, et al. Association between tumor size kinetics and survival in urothelial carcinoma patients treated with atezolizumab: implication for patient's follow-up. Clin Pharmacol Therapeut. 2019;106(4):810-820.
  14. Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748-757.
  15. Bellmunt J, De Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015-1026.
  16. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563.
  17. Rizopoulos D. The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-event Data Using MCMC. Journal of Statistical Software. 2016;72(7). http://dx.doi.org/10.18637/jss.v072.i07.
  18. Desmée S, Mentré F, Veyrat-Follet C, Guedj J. Nonlinear mixed-effect models for prostate-specific antigen kinetics and link with survival in the context of metastatic prostate cancer: a comparison by simulation of two-stage and joint approaches. AAPS J. 2015;17(3):691-699.
  19. Zhang H, Huang Y. Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. Lifetime Data Anal. 2019;28:1-30.
  20. Hoffman MD, Gelman A. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15(1):1593-1623.
  21. Neal RM. MCMC using Hamiltonian dynamics. Handbook Markov Chain Monte Carlo. 2011;2(11):2.
  22. Monnahan CC, Thorson JT, Branch TA. Faster estimation of Bayesian models in ecology using Hamiltonian Monte-Carlo. Methods Ecol Evol. 2017;8(3):339-348.
  23. Gabry J, Goodrich B. rstanarm: Bayesian Applied Regression Modeling Via Stan. R Package Version 2.1; 2016. http://mc-stan.org/rstanarm/.
  24. Wilkerson J, Abdallah K, Hugh-Jones C, et al. Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer retrospective analysis. Lancet Oncol. 2017;18(1):143-154.
  25. Chatterjee MS, Elassaiss-Schaap J, Lindauer A, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor size dynamics in pembrolizumab-treated advanced melanoma. CPT Pharmacometr Syst Pharmacol. 2017;6(1):29-39.
  26. Jacqmin-Gadda H, Thiébaut R, Chêne G, Commenges D. Analysis of left-censored longitudinal data with application to viral load in HIV infection. Biostatistics. 2000;1(4):355-368.
  27. Carpenter B, Gelman A, Hoffman MD, et al. Stan: A probabilistic programming language. J Stat Softw. 2017;76(1). http://dx.doi.org/10.18637/jss.v076.i01.
  28. Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006;1(3):515-534.
  29. Vehtari A, Gelman A, Simpson D, Carpenter B, Burkner P-C. Rank-normalization folding, and localization: an improved Rhat for assessing convergence of MCMC; 2019. arXiv preprint arXiv:1903.08008.
  30. Vehtari A, Lampinen J. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Comput. 2002;14(10):2439-2468.
  31. Piironen J, Vehtari A. Comparison of Bayesian predictive methods for model selection. Stat Comput. 2017;27(3):711-735.
  32. Colby E, Bair E. Cross-validation for nonlinear mixed effects models. J Pharmacokinet Pharmacodyn. 2013;40(2):243-252.
  33. Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2, 3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101(2):151-155.
  34. Borcoman E, Nandikolla A, Long G, Goel S, Le Tourneau C. Patterns of response and progression to immunotherapy. Am Soc Clin Oncol Educ Book. 2018;38:169-178.
  35. Saâda-Bouzid E, Defaucheux C, Karabajakia A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605-1611.
  36. Papageorgiou G, Mauff K, Tomer A, Rizopoulos D. An overview of joint modeling of time-to-event and longitudinal outcomes. Ann Rev Stat Appl. 2019;6:223-240.
  37. Desmée S, Mentré F, Veyrat-Follet C, Sébastien B, Guedj J. Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer. BMC Med Res Methodol. 2017;17(1):105.
  38. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 2017;27(5):1413-1432.

MeSH Term

Algorithms
Bayes Theorem
Humans
Immunotherapy
Markov Chains
Monte Carlo Method
Neoplasms
Nonlinear Dynamics

Word Cloud

Created with Highcharts 10.0.0modelsnonlinearcancerdynamicsjointHMCtumorlimitedBayesiansurvivalsizeusingapproachesbiologicalMonte-CarloalgorithminferenceimmunotherapyadvancedassociationcancontextHamiltoniandistributionsapproachTreatmentevaluationmainlyreliesoverallmarkerssimultaneouslyanalyzedsupportedmanysoftwarespackagesHoweveressentiallylinearlongitudinalpartlimitinterpretationobtainedfactparameteridentifiabilityrequirerichdatasetparticularlysuitedincorporateknowledgeincreaseinformationavailablehighcomputingcostMarkovChainsalgorithmsaimedassessperformancesimplementedStanmodelmethodvalidatedsimulateddataprovidedproperposteriorcredibilityintervalsreasonablecomputationaltimeassessedpatientsmetastaticbladdertreatedatezolizumabagentconfirmedsensitivitypriorcross-validationdevelopedidentifiedcurrentsloperelevantdriversummaryefficientperformframeworkopenswayusecharacterizerapidintersubjectvariabilityobservedtreatmentmodelingmixedeffect

Similar Articles

Cited By