Quantitative Measurement of Breast Density Using Personalized 3D-Printed Breast Model for Magnetic Resonance Imaging.

Rooa Sindi, Yin How Wong, Chai Hong Yeong, Zhonghua Sun
Author Information
  1. Rooa Sindi: Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia.
  2. Yin How Wong: School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia.
  3. Chai Hong Yeong: School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia.
  4. Zhonghua Sun: Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia. ORCID

Abstract

Despite the development and implementation of several MRI techniques for breast density assessments, there is no consensus on the optimal protocol in this regard. This study aimed to determine the most appropriate MRI protocols for the quantitative assessment of breast density using a personalized 3D-printed breast model. The breast model was developed using silicone and peanut oils to simulate the MRI related-characteristics of fibroglandular and adipose breast tissues, and then scanned on a 3T MRI system using non-fat-suppressed and fat-suppressed sequences. Breast volume, fibroglandular tissue volume, and percentage of breast density from these imaging sequences were objectively assessed using Analyze 14.0 software. Finally, the repeated-measures analysis of variance (ANOVA) was performed to examine the differences between the quantitative measurements of breast volume, fibroglandular tissue volume, and percentage of breast density with respect to the corresponding sequences. The volume of fibroglandular tissue and the percentage of breast density were significantly higher in the fat-suppressed sequences than in the non-fat-suppressed sequences ( < 0.05); however, the difference in breast volume was not statistically significant ( = 0.529). Further, a fat-suppressed T2-weighted with turbo inversion recovery magnitude (TIRM) imaging sequence was superior to the non-fat- and fat-suppressed T1- and T2-weighted sequences for the quantitative measurement of breast density due to its ability to represent the exact breast tissue compositions. This study shows that the fat-suppressed sequences tended to be more useful than the non-fat-suppressed sequences for the quantitative measurements of the volume of fibroglandular tissue and the percentage of breast density.

Keywords

References

  1. J Natl Cancer Inst. 2007 Mar 7;99(5):386-95 [PMID: 17341730]
  2. PLoS One. 2014 Jun 03;9(6):e99027 [PMID: 24892933]
  3. PLoS One. 2017 Mar 30;12(3):e0174681 [PMID: 28358833]
  4. Phys Med Biol. 2011 Jun 21;56(12):3513-33 [PMID: 21606556]
  5. Radiology. 2015 Jul;276(1):228-32 [PMID: 25942417]
  6. Med Phys. 2011 Feb;38(2):743-53 [PMID: 21452712]
  7. Adv Chronic Kidney Dis. 2017 May;24(3):138-146 [PMID: 28501075]
  8. Radiology. 2016 Apr;279(1):65-74 [PMID: 26491909]
  9. J Magn Reson Imaging. 2011 Oct;34(4):842-51 [PMID: 21769987]
  10. Med Phys. 2011 Feb;38(2):891-6 [PMID: 21452726]
  11. Eur Radiol. 2014 Sep;24(9):2213-9 [PMID: 24792515]
  12. J Magn Reson Imaging. 2013 Oct;38(4):981-6 [PMID: 23172831]
  13. Phys Med Biol. 2012 Nov 7;57(21):6903-27 [PMID: 23044556]
  14. AJR Am J Roentgenol. 2014 Mar;202(3):W183-90 [PMID: 24555613]
  15. Med Phys. 2011 Jan;38(1):5-14 [PMID: 21361169]
  16. Med Phys. 2017 Sep;44(9):4573-4592 [PMID: 28477346]
  17. Ann Intern Med. 2008 May 6;148(9):671-9 [PMID: 18458280]
  18. Med Phys. 2011 Nov;38(11):5961-8 [PMID: 22047360]
  19. Magn Reson Imaging. 2011 Jan;29(1):91-8 [PMID: 20832226]
  20. J Clin Med. 2019 May 24;8(5): [PMID: 31137728]
  21. IEEE Antennas Wirel Propag Lett. 2012;11:1610-1613 [PMID: 25132808]
  22. J Magn Reson Imaging. 1999 Dec;10(6):968-71 [PMID: 10581510]
  23. PLoS One. 2013 Dec 04;8(12):e81653 [PMID: 24324712]
  24. Radiographics. 2015 Oct;35(6):1738-50 [PMID: 26466182]
  25. PLoS One. 2016 Mar 24;11(3):e0152152 [PMID: 27011312]
  26. Quant Imaging Med Surg. 2020 Jun;10(6):1237-1248 [PMID: 32550133]
  27. Radiol Med. 2017 Oct;122(10):731-742 [PMID: 28643295]
  28. Int J Breast Cancer. 2014;2014:961679 [PMID: 25132995]
  29. Breast. 2009 Feb;18(1):35-40 [PMID: 19010678]
  30. Magn Reson Imaging. 1996;14(6):639-48 [PMID: 8897368]
  31. J Magn Reson Imaging. 2010 Apr;31(4):889-94 [PMID: 20373433]
  32. Cancer Epidemiol Biomarkers Prev. 2006 Jun;15(6):1159-69 [PMID: 16775176]
  33. Med Phys. 2010 Jan;37(1):217-26 [PMID: 20175484]
  34. Eur Radiol. 2008 Jul;18(7):1307-18 [PMID: 18389253]
  35. Radiographics. 2014 Jan-Feb;34(1):217-33 [PMID: 24428292]
  36. Quant Imaging Med Surg. 2019 Jan;9(1):63-74 [PMID: 30788247]
  37. Ann Intern Med. 2012 May 1;156(9):635-48 [PMID: 22547473]
  38. Breast Cancer Res Treat. 2019 Oct;177(3):629-639 [PMID: 31325074]
  39. Pediatr Radiol. 1998 Nov;28(11):846-50 [PMID: 9799315]
  40. Biomed Opt Express. 2019 Oct 29;10(11):5921-5939 [PMID: 31799055]
  41. Magn Reson Imaging. 2005 May;23(4):591-9 [PMID: 15919606]

Word Cloud

Created with Highcharts 10.0.0breastdensitysequencesvolumefibroglandulartissueMRIfat-suppressedquantitativeusingpercentagemodelnon-fat-suppressedBreast0study3D-printedimagingmeasurementsT2-weightedTIRMDespitedevelopmentimplementationseveraltechniquesassessmentsconsensusoptimalprotocolregardaimeddetermineappropriateprotocolsassessmentpersonalizeddevelopedsiliconepeanutoilssimulaterelated-characteristicsadiposetissuesscanned3TsystemobjectivelyassessedAnalyze14softwareFinallyrepeated-measuresanalysisvarianceANOVAperformedexaminedifferencesrespectcorrespondingsignificantlyhigher<05howeverdifferencestatisticallysignificant=529turboinversionrecoverymagnitudesequencesuperiornon-fat-T1-measurementdueabilityrepresentexactcompositionsshowstendedusefulQuantitativeMeasurementDensityUsingPersonalized3D-PrintedModelMagneticResonanceImagingfatsuppression

Similar Articles

Cited By