A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae).

Antonio Moretta, Rosanna Salvia, Carmen Scieuzo, Angela Di Somma, Heiko Vogel, Pietro Pucci, Alessandro Sgambato, Michael Wolff, Patrizia Falabella
Author Information
  1. Antonio Moretta: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
  2. Rosanna Salvia: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
  3. Carmen Scieuzo: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
  4. Angela Di Somma: Department of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126, Napoli, Italy.
  5. Heiko Vogel: Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
  6. Pietro Pucci: CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, Naples, Italy.
  7. Alessandro Sgambato: Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy.
  8. Michael Wolff: Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
  9. Patrizia Falabella: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy. patrizia.falabell@unibas.it.

Abstract

Antimicrobial peptides (AMPs) play a key role in the innate immunity, the first line of defense against bacteria, fungi, and viruses. AMPs are small molecules, ranging from 10 to 100 amino acid residues produced by all living organisms. Because of their wide biodiversity, insects are among the richest and most innovative sources for AMPs. In particular, the insect Hermetia illucens (Diptera: Stratiomyidae) shows an extraordinary ability to live in hostile environments, as it feeds on decaying substrates, which are rich in microbial colonies, and is one of the most promising sources for AMPs. The larvae and the combined adult male and female H. illucens transcriptomes were examined, and all the sequences, putatively encoding AMPs, were analysed with different machine learning-algorithms, such as the Support Vector Machine, the Discriminant Analysis, the Artificial Neural Network, and the Random Forest available on the CAMP database, in order to predict their antimicrobial activity. Moreover, the iACP tool, the AVPpred, and the Antifp servers were used to predict the anticancer, the antiviral, and the antifungal activities, respectively. The related physicochemical properties were evaluated with the Antimicrobial Peptide Database Calculator and Predictor. These analyses allowed to identify 57 putatively active peptides suitable for subsequent experimental validation studies.

References

  1. Hillyer, J. F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 58, 102–118 (2016). [PMID: 26695127]
  2. Tsakas, S. & Marmaras, V. J. Insect immunity and its signalling: An overview. Invert. Surviv. J. 7, 228–238 (2010).
  3. Marmaras, V. J. & Lampropoulou, M. Regulators and signalling in insect haemocyte immunity. Cell Signal. 21, 186–195 (2009). [PMID: 18790716]
  4. Brandenburg, L. O., Merres, J., Albrecht, L. J., Varoga, D. & Pufe, T. Antimicrobial peptides: Multifunctional drugs for different applications. Polymers. 4, 539–560 (2012). [DOI: 10.3390/polym4010539]
  5. Lavine, M. D. & Strand, M. R. Insect hemocytes and their role in immunity. Insect. Biochem. Mol. Biol. 32, 1295–1309 (2002). [PMID: 12225920]
  6. Hoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. BBA Biomembr. 1778, 357–375 (2008). [DOI: 10.1016/j.bbamem.2007.11.008]
  7. Steiner, H., Hultmark, D., Engström, Å, Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248 (1981). [PMID: 7019715]
  8. Otvos, L. Jr. Antibacterial peptides isolated from insects. J. Pep. Sci. 6, 497–511 (2000). [DOI: 10.1002/1099-1387(200010)6]
  9. Wimley, W. C. & Hristova, K. Antimicrobial peptides: Successes, challenges and unanswered questions. J. Memb. Biol. 239, 27–34 (2011). [DOI: 10.1007/s00232-011-9343-0]
  10. Gaspar, D., Veiga, A. S. & Castanho, M. A. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4, 294 (2013). [PMID: 24101917]
  11. Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol. 625, 190–194 (2009). [PMID: 19835863]
  12. Epand, R. M. & Vogel, H. J. Diversity of antimicrobial peptides and their mechanisms of action. BBA Biomemb. 1462, 11–28 (1999). [DOI: 10.1016/S0005-2736(99)00198-4]
  13. Guilhelmelli, F. et al. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol. 4, 353 (2013). [PMID: 24367355]
  14. Le, C. F., Fang, C. M. & Sekaran, S. D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 61, e02340-e2416 (2017). [PMID: 28167546]
  15. Vilcinskas, A., Krishnendu, M. & Vogel, H. Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. P. Roy. Soc. B. 280, 20122113 (2013).
  16. Di Somma, A. et al. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim. Biophys. Acta Gen. Subj. 1864, 129606 (2020).
  17. Gerardo, N. M. et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 11, R21 (2010). [PMID: 20178569]
  18. Makkar, H. P., Tran, G., Heuzé, V. & Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Tech. 197, 1–33 (2014). [DOI: 10.1016/j.anifeedsci.2014.07.008]
  19. Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K. & Idicula-Thomas, S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Res. 38, D774–D780 (2009). [PMID: 19923233]
  20. Liaw, A. & Wiener, M. Classification and regression by RandomForest. R News. 2, 18–22 (2002).
  21. Müller, K. R., Mika, S., Rätsch, G., Tsuda, K. & Schölkopf, B. An introduction to kernel-based learning algorithms. IEEE T. Neural Netw. 12, 181–201 (2001). [DOI: 10.1109/72.914517]
  22. Kulkarni, A., Jayaraman, V. K. & Kulkarni, B. D. Support vector classification with parameter tuning assisted by agent-based technique. Comput. Chem. Eng. 28, 311–318 (2004). [DOI: 10.1016/S0098-1354(03)00188-1]
  23. Vogel, H., Müller, A., Heckel, D. G., Gutzeit, H. & Vilcinskas, A. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev. Comp. Immunol. 78, 141–148 (2018). [PMID: 28966127]
  24. Hu, H. et al. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol Cells. 35, 106–114 (2013). [PMID: 23456332]
  25. Jozefiak, A. & Engberg, R. M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci. 26, 87–99 (2017). [DOI: 10.22358/jafs/69998/2017]
  26. Bechinger, B. & Gorr, S. U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res. 96, 254–260 (2017). [PMID: 27872334]
  27. Oñate-Garzón, J. et al. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. J. Antibiot. 70, 238–245 (2017). [PMID: 27999446]
  28. Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003). [PMID: 12615953]
  29. Hirsch, R. et al. Antimicrobial peptides from rat-tailed maggots of the drone fly eristalis tenax show potent activity against multidrug-resistant gram-negative bacteria. Microorganisms. 8, E626 (2020). [PMID: 32344933]
  30. Bulet, P. & Hetru, C. Antimicrobial peptides in insects: Structure and function. Dev. Comp. Immunol. 23, 329–344 (1999). [PMID: 10426426]
  31. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: An evolutionary perspective. Nat. Immunol. 3, 121–126 (2002). [PMID: 11812988]
  32. Yi, H. Y., Chowdhury, M., Huang, Y. D. & Yu, X. Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822 (2014). [PMID: 24811407]
  33. Yamada, K. & Natori, S. Purification, sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells: Similarity of sapecin B to charybdotoxin. Biochem. J. 291, 275–279 (1993). [PMID: 8471044]
  34. Bachère, E., Destoumieux, D. & Bulet, P. Penaeidins, antimicrobial peptides of shrimp: A comparison with other effectors of innate immunity. Aquaculture 191, 71–88 (2000). [DOI: 10.1016/S0044-8486(00)00419-1]
  35. Hirsch, R. et al. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J. Antimicrob. Chemother. 74, 96–107 (2019). [PMID: 30272195]
  36. Hetru, C., Troxler, L. & Hoffmann, J. A. Drosophila melanogaster antimicrobial defense. J. infect. Dis. 187, S327–S334 (2003). [PMID: 12792847]
  37. Lehane, M. J., Wu, D. & Lehane, S. M. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Nat. Acad. Sci. 94, 11502–11507 (1997). [PMID: 9326639]
  38. Ueda, K., Imamura, M., Saito, A. & Sato, R. Purification and cDNA cloning of an insect defensin from larvae of the longicorn beetle, Acalolepta luxuriosa. Appl. Entomol. Zool. 40, 335–345 (2005). [DOI: 10.1303/aez.2005.335]
  39. Thevissen, K., Kristensen, H. H., Thomma, B. P., Cammue, B. P. & Francois, I. E. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 12, 966–971 (2007). [PMID: 17993416]
  40. Fujiwara, S. et al. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 265, 11333–11337 (1990). [PMID: 2358464]
  41. Wu, Q., Patočka, J. & Kuča, K. Insect antimicrobial peptides, a mini review. Toxins. 10, 461 (2018). [>PMCID: ]
  42. Andrä, J., Berninghausen, O. & Leippe, M. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med. Microbiol. Immunol. 189, 169–173 (2001). [PMID: 11388616]
  43. Srisailam, S., Arunkumar, A. I., Wang, W., Yu, C. & Chen, H. M. Conformational study of a custom antibacterial peptide cecropin B1: Implications of the lytic activity. BBA-Protein Struct. Mol. Enzym. 1479, 275–285 (2000). [DOI: 10.1016/S0167-4838(00)00008-X]
  44. Hedengren, M., Borge, K. & Hultmark, D. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem. Bioph. Res. Co. 279, 574–581 (2000). [DOI: 10.1006/bbrc.2000.3988]
  45. Sun, S. C., Asling, B. & Faye, I. Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J. Biol. Chem. 266, 6644–6649 (1991). [PMID: 2007608]
  46. Luplertlop, N. et al. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 7, e1001252 (2001). [DOI: 10.1371/journal.ppat.1001252]
  47. Akbari, R. et al. Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of acinetobacter baumannii and pseudomonas aeruginosa. Microb. Drug Resist. 25, 193–202 (2019). [PMID: 30281385]
  48. Cytryńska, M. et al. Proline-rich antimicrobial peptides in medicinal maggots of Lucilia sericata interact with bacterial DnaK but do not inhibit protein synthesis. Front. Pharmacol. 11, 532 (2020). [PMID: 32390853]
  49. Grafskaia, E. N. et al. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J. Bioinform. Comput. Biol. 16, 1840006 (2018). [PMID: 29361893]
  50. Pavlova, A. S. et al. Identification of antimicrobial peptides from novel Lactobacillus fermentum strain. Protein J. 39, 73–84 (2020). [PMID: 31933011]
  51. Waghu, F. H. & Idicula-Thomas, S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci. 29, 36–42 (2020). [PMID: 31441165]
  52. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids. Res. 25, 3389–3402 (1997). [PMID: 9254694]
  53. Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008). [PMID: 18445632]
  54. Vogel, H., Badapanda, C., Knorr, E. & Vilcinskas, A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle M. eligethes aeneus. Insect Mol. Biol. 23, 98–112 (2014). [PMID: 24252113]
  55. Duckert, P., Brunak, S. & Blom, N. Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17, 107–112 (2004). [PMID: 14985543]
  56. Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 8, 785 (2011). [PMID: 21959131]
  57. Waghu, F. H., Barai, R. S., Gurung, P. & Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 44, D1094–D1097 (2016). [PMID: 26467475]
  58. Chen, W., Ding, H., Feng, P., Lin, H. & Chou, K. C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget. 7, 16895–16909 (2016). [PMID: 26942877]
  59. Feng, P. M., Chen, W., Lin, H. & Chou, K. C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem. 442, 118–125 (2013). [PMID: 23756733]
  60. Ding, H. et al. iCTX-type: A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed. Res. Int. 2014, 286419 (2014). [PMID: 24991545]
  61. Chou, K. C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273, 236–247 (2011). [PMID: 21168420]
  62. Chou, K. C. Prediction of protein cellular attributes using pseudo-amino acid composition. PROTEINs. 43, 246–255 (2001). [PMID: 11288174]
  63. Thakur, N., Qureshi, A. & Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 40, W199–W204 (2012). [PMID: 22638580]
  64. Agrawal, P. et al. In silico approach for prediction of antifungal peptides. Front. Microbiol. 9, 323 (2018). [PMID: 29535692]
  65. Wang, G., Li, X. & Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016). [PMID: 26602694]
  66. Wang, G., Li, X. & Wang, Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933–D937 (2009). [PMID: 18957441]
  67. Wang, Z. & Wang, G. APD: The antimicrobial peptide database. Nucleic Acids Res. 32, D590–D592 (2004). [PMID: 14681488]
  68. Bjellqvist, B. et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 1023–1031 (1993). [PMID: 8125050]
  69. Bjellqvist, B., Basse, B., Olsen, E. & Celis, J. E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15, 529–539 (1994). [PMID: 8055880]

MeSH Term

Algorithms
Animals
Antifungal Agents
Antineoplastic Agents
Antiviral Agents
Chemical Phenomena
Diptera
Female
Immunity, Innate
Larva
Machine Learning
Male
Pore Forming Cytotoxic Proteins
Transcriptome

Chemicals

Antifungal Agents
Antineoplastic Agents
Antiviral Agents
Pore Forming Cytotoxic Proteins

Word Cloud

Created with Highcharts 10.0.0AMPspeptidesillucensAntimicrobialsourcesHermetiaDiptera:Stratiomyidaeputativelypredictantimicrobialplaykeyroleinnateimmunityfirstlinedefensebacteriafungivirusessmallmoleculesranging10100aminoacidresiduesproducedlivingorganismswidebiodiversityinsectsamongrichestinnovativeparticularinsectshowsextraordinaryabilitylivehostileenvironmentsfeedsdecayingsubstratesrichmicrobialcoloniesonepromisinglarvaecombinedadultmalefemaleHtranscriptomesexaminedsequencesencodinganalyseddifferentmachinelearning-algorithmsSupportVectorMachineDiscriminantAnalysisArtificialNeuralNetworkRandomForestavailableCAMPdatabaseorderactivityMoreoveriACPtoolAVPpredAntifpserversusedanticancerantiviralantifungalactivitiesrespectivelyrelatedphysicochemicalpropertiesevaluatedPeptideDatabaseCalculatorPredictoranalysesallowedidentify57activesuitablesubsequentexperimentalvalidationstudiesbioinformaticstudyidentifiedBlackSoldierFlyBSF

Similar Articles

Cited By