Statistical physics approaches to the complex Earth system.

Jingfang Fan, Jun Meng, Josef Ludescher, Xiaosong Chen, Yosef Ashkenazy, Jürgen Kurths, Shlomo Havlin, Hans Joachim Schellnhuber
Author Information
  1. Jingfang Fan: Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany.
  2. Jun Meng: School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  3. Josef Ludescher: Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany.
  4. Xiaosong Chen: School of Systems Science, Beijing Normal University, Beijing 100875, China.
  5. Yosef Ashkenazy: Department of Solar Energy and Environmental Physics, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
  6. Jürgen Kurths: Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany.
  7. Shlomo Havlin: Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel.
  8. Hans Joachim Schellnhuber: Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany.

Abstract

Global warming, extreme climate events, earthquakes and their accompanying socioeconomic disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, multiple interactions and complex structures of the Earth system, the understanding and, in particular, the prediction of such disruptive events represent formidable challenges to both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge of the Earth system, including climate extreme events, earthquakes and geological relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as critical phenomena, network theory, percolation, tipping points analysis, and entropy can be applied to complex Earth systems. Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics concepts and theories can be useful in the field of Earth system science.

Keywords

References

  1. Chaos. 1995 Mar;5(1):110-117 [PMID: 12780163]
  2. Ambio. 2012 Feb;41(1):10-22 [PMID: 22270703]
  3. Phys Rev Lett. 2010 Dec 17;105(25):255701 [PMID: 21231601]
  4. Phys Rev Lett. 2005 Apr 29;94(16):160202 [PMID: 15904198]
  5. Epilepsy Res. 2011 Sep;96(1-2):29-38 [PMID: 21616643]
  6. Nature. 2010 Sep 23;467(7314):456-9 [PMID: 20827269]
  7. Nature. 2019 Feb;566(7744):373-377 [PMID: 30700912]
  8. Prog Neurobiol. 2005 Sep-Oct;77(1-2):1-37 [PMID: 16289760]
  9. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2752-2757 [PMID: 29483256]
  10. Science. 2009 Feb 27;323(5918):1187-90 [PMID: 19251622]
  11. Nature. 2005 Oct 13;437(7061):969-74 [PMID: 16222291]
  12. Science. 2009 Mar 13;323(5920):1453-5 [PMID: 19286548]
  13. Phys Rev Lett. 2019 Apr 19;122(15):158701 [PMID: 31050495]
  14. Nat Commun. 2015 Oct 07;6:8502 [PMID: 26443010]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066134 [PMID: 23005189]
  16. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7543-7548 [PMID: 28674008]
  17. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E639-E647 [PMID: 29311325]
  18. Science. 1996 May 17;272(5264):984-6 [PMID: 8662583]
  19. Sci Adv. 2017 Nov 08;3(11):e1600983 [PMID: 29134193]
  20. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  21. Neuron. 2001 Apr;30(1):51-64 [PMID: 11343644]
  22. Science. 2007 Aug 17;317(5840):935-8 [PMID: 17702940]
  23. Sci Adv. 2018 Feb 14;4(2):e1700578 [PMID: 29487899]
  24. Nat Med. 2003 Mar;9(3):241-2; author reply 242 [PMID: 12612550]
  25. Phys Rev Lett. 2004 Aug 27;93(9):098501 [PMID: 15447152]
  26. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11742-5 [PMID: 23818627]
  27. Nature. 2016 Jun 29;534(7609):640-6 [PMID: 27357793]
  28. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  29. Nature. 2005 Jun 9;435(7043):814-8 [PMID: 15944704]
  30. Phys Rev Lett. 2000 Oct 23;85(17):3736-9 [PMID: 11030994]
  31. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2064-6 [PMID: 24516172]
  32. Science. 2002 Mar 22;295(5563):2250-3 [PMID: 11910106]
  33. Phys Rev Lett. 2011 Jun 3;106(22):225701 [PMID: 21702616]
  34. Science. 2007 Aug 10;317(5839):793-6 [PMID: 17615306]
  35. Philos Trans A Math Phys Eng Sci. 2012 Mar 13;370(1962):1166-84 [PMID: 22291228]
  36. Phys Rev Lett. 2006 Feb 17;96(6):066602 [PMID: 16606025]
  37. Phys Rev Lett. 2006 Aug 18;97(7):078501 [PMID: 17026277]
  38. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  39. Philos Trans A Math Phys Eng Sci. 2012 Mar 13;370(1962):1185-204 [PMID: 22291229]
  40. Oecologia. 1984 Dec;65(1):101-107 [PMID: 28312117]
  41. Nat Commun. 2014 Oct 14;5:5199 [PMID: 25310906]
  42. Nature. 2011 Jan 20;469(7330):351-5 [PMID: 21248842]
  43. Nature. 2002 Sep 12;419(6903):207-14 [PMID: 12226675]
  44. Psychiatry Res. 2012 Mar 31;201(3):226-32 [PMID: 22445216]
  45. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061110 [PMID: 23005054]
  46. Chaos. 2015 Nov;25(11):113101 [PMID: 26627561]
  47. Science. 2005 Aug 5;309(5736):920-3 [PMID: 16081733]
  48. Ecol Lett. 2008 Feb;11(2):128-38 [PMID: 18021242]
  49. Science. 2013 Mar 8;339(6124):1185-7 [PMID: 23471402]
  50. Nature. 2004 May 13;429(6988):180-4 [PMID: 15141212]
  51. Nature. 2018 Apr;556(7700):191-196 [PMID: 29643485]
  52. Nature. 2018 Aug;560(7720):632-634 [PMID: 30158606]
  53. Phys Rev Lett. 1993 Mar 1;70(9):1343-6 [PMID: 10054352]
  54. Nature. 2005 Jan 27;433(7024):392-5 [PMID: 15674285]
  55. Phys Rev A Gen Phys. 1985 Jul;32(1):506-511 [PMID: 9896073]
  56. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 [PMID: 10843903]
  57. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062814 [PMID: 25615155]
  58. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):826-31 [PMID: 19124774]
  59. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1786-93 [PMID: 18258748]
  60. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3624-3629 [PMID: 30808752]
  61. Phys Rev Lett. 2013 Apr 26;110(17):178501 [PMID: 23679788]
  62. Phys Rev Lett. 2008 Jun 6;100(22):228502 [PMID: 18643468]
  63. Science. 1999 Jun 25;284(5423):2156-9 [PMID: 10381876]
  64. Phys Rev Lett. 2009 Oct 16;103(16):168701 [PMID: 19905730]
  65. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52 [PMID: 15007165]
  66. Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2354-2365 [PMID: 31964839]
  67. Science. 2018 Jun 8;360(6393):1116-1119 [PMID: 29880688]
  68. Phys Rev E. 2019 Feb;99(2-1):022304 [PMID: 30934344]
  69. Phys Rev Lett. 2015 Dec 31;115(26):268501 [PMID: 26765033]
  70. Phys Rev Lett. 2005 Jan 14;94(1):018102 [PMID: 15698136]
  71. Science. 2006 May 26;312(5777):1179 [PMID: 16728633]
  72. Phys Rev Lett. 2000 Nov 20;85(21):4629-32 [PMID: 11082613]
  73. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):041904 [PMID: 12443232]
  74. Sci Rep. 2016 Jul 14;6:29552 [PMID: 27412567]
  75. Phys Rev Lett. 2012 Nov 16;109(20):205703 [PMID: 23215509]
  76. Phys Rev Lett. 1993 Aug 2;71(5):666-669 [PMID: 10055336]
  77. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13709-14 [PMID: 15358860]
  78. Am J Physiol. 1994 Apr;266(4 Pt 2):H1643-56 [PMID: 8184944]
  79. Nature. 2009 Sep 3;461(7260):53-9 [PMID: 19727193]
  80. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148655]
  81. Artif Intell Med. 2009 Nov;47(3):263-74 [PMID: 19403281]
  82. Nature. 2004 Sep 9;431(7005):147-51 [PMID: 15356621]
  83. Phys Rev Lett. 2002 Apr 29;88(17):178501 [PMID: 12005787]
  84. Nature. 2000 Nov 23;408(6811):453-7 [PMID: 11100723]
  85. Nature. 2015 Aug 6;524(7563):65-8 [PMID: 26131931]
  86. Phys Rev Lett. 2013 Sep 27;111(13):138501 [PMID: 24116820]
  87. Sci Adv. 2017 Sep 13;3(9):e1701239 [PMID: 28924610]
  88. Nature. 2004 Apr 15;428(6984):733-6 [PMID: 15085127]
  89. Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12128-E12134 [PMID: 30587552]
  90. Nat Commun. 2016 Mar 01;7:10850 [PMID: 26926803]
  91. Phys Rev Lett. 2011 Sep 30;107(14):148501 [PMID: 22107243]
  92. Trends Ecol Evol. 2005 Oct;20(10):553-60 [PMID: 16701434]
  93. Nature. 2019 Sep;573(7775):568-572 [PMID: 31534218]
  94. Phys Rep. 2014 Nov 1;544(1):1-122 [PMID: 32834429]
  95. Nature. 2018 Feb 22;554(7693):519-522 [PMID: 29443966]
  96. Science. 2003 Mar 28;299(5615):2005-10 [PMID: 12663908]
  97. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  98. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6533-6538 [PMID: 28584113]
  99. Phys Rev Lett. 2009 Jul 24;103(4):045701 [PMID: 19659370]
  100. Math Biosci. 2002 Nov-Dec;180:293-305 [PMID: 12387929]
  101. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8252-8259 [PMID: 30082409]
  102. Nature. 2010 Apr 15;464(7291):1025-8 [PMID: 20393559]
  103. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 2):016706 [PMID: 11461441]
  104. Science. 2006 May 26;312(5777):1146-8 [PMID: 16728622]
  105. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301 [PMID: 11607165]
  106. Phys Rev Lett. 2004 Mar 12;92(10):108501 [PMID: 15089251]
  107. Nature. 2002 Jan 3;415(6867):23 [PMID: 11780095]
  108. Sci Rep. 2016 May 26;6:26779 [PMID: 27226194]
  109. Science. 2012 Oct 19;338(6105):344-8 [PMID: 23087241]
  110. Nature. 2006 Oct 19;443(7113):859-62 [PMID: 17051218]
  111. Ecol Lett. 2014 Mar;17(3):350-9 [PMID: 24386999]
  112. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13081-13086 [PMID: 27799563]
  113. Nature. 2009 Sep 24;461(7263):511-4 [PMID: 19779449]
  114. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14191-6 [PMID: 26578762]
  115. Phys Rev E. 2019 Apr;99(4-1):042210 [PMID: 31108655]
  116. Science. 2012 Jun 1;336(6085):1175-7 [PMID: 22654061]
  117. Nature. 2019 Feb;566(7743):195-204 [PMID: 30760912]
  118. Nature. 2019 Nov;575(7784):592-595 [PMID: 31776487]
  119. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):669-72 [PMID: 25552558]
  120. Phys Rev Lett. 2008 Jun 6;100(22):228501 [PMID: 18643467]
  121. Nat Commun. 2018 Feb 20;9(1):601 [PMID: 29463787]
  122. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011103 [PMID: 20866561]
  123. Nature. 2013 Mar 7;495(7439):90-3 [PMID: 23467167]
  124. Nature. 2001 Oct 11;413(6856):591-6 [PMID: 11595939]
  125. Ecol Lett. 2008 May;11(5):450-60 [PMID: 18279354]
  126. Nature. 2005 Apr 7;434(7034):777-82 [PMID: 15772676]
  127. Phys Rev Lett. 2005 Nov 11;95(20):208501 [PMID: 16384112]
  128. Ecol Lett. 2006 Mar;9(3):311-8 [PMID: 16958897]
  129. Phys Rev Lett. 2000 Dec 18;85(25):5468-71 [PMID: 11136023]
  130. Nature. 2009 Sep 24;461(7263):472-5 [PMID: 19779433]
  131. Nature. 2001 May 3;411(6833):41-2 [PMID: 11333967]
  132. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9 [PMID: 9961383]
  133. Phys Rev Lett. 2000 Nov 20;85(21):4626-8 [PMID: 11082612]
  134. Science. 2006 Oct 6;314(5796):115-9 [PMID: 16959975]
  135. Chaos. 2015 Mar;25(3):033105 [PMID: 25833427]
  136. Nature. 2007 Sep 13;449(7159):213-7 [PMID: 17851524]
  137. PLoS One. 2012;7(7):e41010 [PMID: 22815897]
  138. Chaos. 2019 Jul;29(7):073105 [PMID: 31370416]
  139. Science. 2016 Sep 9;353(6304): [PMID: 27609899]
  140. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14308-12 [PMID: 18787119]
  141. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20578-83 [PMID: 19060210]
  142. PLoS Curr. 2013 Jan 28;5: [PMID: 24045424]
  143. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  144. Science. 2011 Oct 14;334(6053):232-5 [PMID: 21998390]
  145. Science. 1998 Dec 18;282(5397):2238-41 [PMID: 9856942]
  146. Science. 2011 Jul 15;333(6040):322-4 [PMID: 21764743]
  147. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):030103 [PMID: 20365683]
  148. Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):177-183 [PMID: 31874928]
  149. Science. 1987 Jun 19;236(4808):1563-7 [PMID: 17835741]
  150. Nat Commun. 2015 May 18;6:7154 [PMID: 25981180]
  151. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):5084-91 [PMID: 9963221]
  152. Nat Commun. 2014;5:3267 [PMID: 24513667]
  153. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):035103 [PMID: 12366171]
  154. Phys Rev Lett. 2009 Apr 24;102(16):168501 [PMID: 19518761]
  155. Chaos. 2017 Mar;27(3):035807 [PMID: 28364749]
  156. Hum Factors. 2011 Aug;53(4):403-14 [PMID: 21901937]
  157. Sci Rep. 2015 Feb 12;5:8417 [PMID: 25673036]
  158. Nature. 2014 May 15;509(7500):349-52 [PMID: 24828193]
  159. Nature. 2012 Dec 20;492(7429):419-22 [PMID: 23160492]
  160. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3825-8 [PMID: 16578734]
  161. Phys Rev Lett. 2009 Dec 18;103(25):255701 [PMID: 20366263]
  162. Nat Commun. 2019 Mar 4;10(1):1017 [PMID: 30833554]
  163. Glob Chang Biol. 2014 Aug;20(8):2540-54 [PMID: 24753029]
  164. Science. 2017 Dec 1;358(6367):1164-1168 [PMID: 29191903]
  165. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026118 [PMID: 11497662]

Word Cloud

Created with Highcharts 10.0.0EarthcomplexsystemphysicssystemseventssciencestatisticalapproachesextremeclimateearthquakesunderstandingscientificnewconceptssubstantiallyknowledgereviewnetworkcanStatisticalComplexGlobalwarmingaccompanyingsocioeconomicdisastersposesignificantriskshumanityYetduenonlinearfeedbacksmultipleinteractionsstructuresparticularpredictiondisruptiverepresentformidablechallengespolicycommunitiespastyearsemergenceevolutionattractedmuchattentionproducedframeworksEspeciallynovelnetworks-basedtechniquesdevelopedimplementedadvanceincludinggeologicalrelieffeaturesleadingimprovedpredictiveperformancespresentcomprehensiverecentprogressdevelopmentapplicationcombinedcriticalphenomenatheorypercolationtippingpointsanalysisentropyappliedNotablyintegratingtoolsprovideinsightsperspectivesdynamicsoverallaimofferreaderstheoriesusefulfieldClimatechangeEarthquake

Similar Articles

Cited By (19)