Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence.

Charly Jehan, Camille Sabarly, Thierry Rigaud, Yannick Moret
Author Information
  1. Charly Jehan: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID
  2. Camille Sabarly: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France.
  3. Thierry Rigaud: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID
  4. Yannick Moret: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID

Abstract

The terminal investment, reproductive restraint or senescence theories may explain individual late-life patterns of reproduction. The terminal investment hypothesis predicts that individuals increase reproductive allocation late in life as prospects for future survival decrease. The other two hypotheses predict reduced reproduction late in life, but for different reasons. Under the Reproductive Restraint hypothesis, individuals restrain their reproductive effort to sustain future survival and gain more time for reproducing, whereas under the Senescence process, reproduction is constrained because of somatic deterioration. While these hypotheses imply that reproduction is costly, they should have contrasted implications in terms of survival after late reproduction and somatic maintenance. Testing these hypotheses requires proper consideration of the effects of age-dependent reproductive effort on post-reproduction survival and age-related somatic functions. We experimentally tested these three hypotheses in females of the mealworm beetle, Tenebrio molitor, an iteroparous and income breeder insect. We manipulated their age-specific allocation into reproduction and observed the effects of this manipulation on their late-life fecundity, post-reproduction survival and immunocompetence as a measurement of somatic protection. We found that females exhibit age-related decline in fecundity and that this reproductive senescence is accelerated by a cost of early reproduction. The cost of reproduction had no significant effect on female longevity and their ability to survive a bacterial infection, despite that some immune cells were depleted by reproduction. We found that female post-infection survival deteriorated with age, which could be partly explained by a decline in some immune parameters. Importantly, females did not increase their reproductive effort late in life at the expense of their late-life post-reproduction survival. Late-life reproduction in T. molitor females is senescing and not consistent with a terminal investment strategy. Rather, our results suggest that females allocate resources according to a priority scheme favouring longevity at the expense of reproduction, which is in line with the reproductive restraint hypothesis. Such a priority scheme also shows that a relatively short-lived insect can evolve life-history strategies hitherto known only in long-lived animals. This puts in perspective the role of longevity in the evolution of life-history strategies.

Keywords

References

  1. Adamo, S. A., Jensen, M., & Younger, M. (2001). Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): Trade-offs between immunity and reproduction. Animal Behaviour, 62, 417-425. https://doi.org/10.1006/anbe.2001.1786
  2. Alonso-Alvarez, C., Bertrand, S., Devevey, G., Prost, J., Faivre, B., & Sorci, G. (2004). Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters, 7, 363-368. https://doi.org/10.1111/j.1461-0248.2004.00594.x
  3. Bell, G. (1980). The costs of reproduction and their consequences. The American Naturalist, 116, 45-76. https://doi.org/10.1086/283611
  4. Boonekamp, J. J., Bauch, C., & Verhulst, S. (2020). Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population. Journal of Animal Ecology, 90: 1395-1407. https://doi.org/10.1111/1365-2656.13186
  5. Bouwhuis, S., Choquet, R., Sheldon, B. C., & Verhulst, S. (2012). The forms and fitness cost of senescence: Age- specific recapture, survival, reproduction, and reproductive value in a wild bird population. The American Naturalist, 179, 15-27. https://doi.org/10.1086/663194
  6. Charlesworth, B., & Léon, J. A. (1976). The relation of reproductive effort to age. The American Naturalist, 110, 449-459. https://doi.org/10.1086/283079
  7. Charly, J., Sabarly, C., Rigaud, T., & Moret, Y.. (2020). Data from: Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. v3, Dryad Digital Repository, https://doi.org/10.5061/dryad.stqjq2c1w
  8. Chung, K.-H., & Moon, M.-J. (2004). Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomological Research, 34, 131-138. https://doi.org/10.1111/j.1748-5967.2004.tb00102.x
  9. Churchill, E. R., Dytham, C., & Thom, M. D. F. (2019). Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Scientific Reports, 9, 2167. https://doi.org/10.1038/s41598-019-38843-w
  10. Clutton-Brock, T. H. (1984). Reproductive effort and terminal investment in iteroparous animals. The American Naturalist, 123, 212-229. https://doi.org/10.1086/284198
  11. Cotter, S. A., Ward, R. J. S., & Kilner, R. M. (2010). Age-specific reproductive investment in female burying beetles: Independent effects of state and risk of death. Functional Ecology, 25, 652-660. https://doi.org/10.1111/j.1365-2435.2010.01819.x
  12. Coulson, J. C., & Fairweather, J. A. (2001). Reduced reproductive performance prior to death in the Black-legged Kittiwake: Senescence or terminal illness? Journal of Avian Biology, 32, 146-152. https://doi.org/10.1034/j.1600-048X.2001.320207.x
  13. Creighton, J. C., Heflin, N. D., & Belk, M. C. (2009). Cost of reproduction, resource quality, and terminal investment in a burying beetle. The American Naturalist, 174, 673-684. https://doi.org/10.1086/605963
  14. Curio, E. (1983). Why de young birds reproduce less well? Ibis, 125, 400-404. https://doi.org/10.1111/j.1474-919X.1983.tb03130.x
  15. Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. R. J., & Krams, I. A. (2012). Senescence in immune priming and attractiveness in a beetle. Journal of Evolutionary Biology, 25, 1298-1304. https://doi.org/10.1111/j.1420-9101.2012.02516.x
  16. Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M., & Moret, Y. (2017). A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Scientific Reports, 7, 12429. https://doi.org/10.1038/s41598-017-12769-7
  17. Dhinaut, J., Chogne, M., & Moret, Y. (2018). Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. Journal of Animal Ecology, 87, 448-463. https://doi.org/10.1111/1365-2656.12661
  18. Dick, J. (1937). Oviposition in certain coleoptera. Annals of Applied Biology, 24, 762-796. https://doi.org/10.1111/j.1744-7348.1937.tb05055.x
  19. Doums, C., Moret, Y., Benelli, E., & Schmid-Hempel, P. (2002). Senescence of immune defence in Bombus workers. Ecological Entomology, 27, 138-144. https://doi.org/10.1046/j.1365-2311.2002.00388.x
  20. Drnevich, J. M., Papke, R. S., Rauser, C. L., & Rutowski, R. L. (2001). Material benefits from multiple mating in female mealworm beetles (Tenebrio molitor L.). Journal of Insect Behavior, 14, 215-230. https://doi.org/10.1023/A:1007889712054
  21. Du Rand, N., & Laing, M. (2011). Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). African Journal of Microbiology Research, 5, 2222-2228. https://doi.org/10.5897/AJMR11.069
  22. Elliott, K. H., O'Reilly, K. M., Hatch, S. A., Gaston, A. J., Hare, J. F., & Anderson, W. G. (2014). The prudent parent meets old age: A high stress response in very old seabirds supports the terminal restraint hypothesis. Hormone and Behavior, 66, 828-837. https://doi.org/10.1016/j.yhbeh.2014.11.001
  23. Fedorka, K. M., Zuk, M., & Mousseau, T. A. (2004). Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius. Evolution, 58, 2478-2485. https://doi.org/10.1111/j.0014-3820.2004.tb00877.x
  24. Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology, 46, 369-375. https://doi.org/10.1016/j.exger.2010.10.008
  25. Forslund, P., & Pärt, T. (1995). Age and reproduction in birds - Hypotheses and tests. Trends in Ecology & Evolution, 10, 374-378. https://doi.org/10.1016/s0169-5347(00)89141-7
  26. Haine, E. R., Moret, Y., Siva-Jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. Science, 322, 1257-1259. https://doi.org/10.1126/science.1165265
  27. Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T., & Rolff, J. (2008). Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). Journal of Insect Physiology, 54, 1090-1097. https://doi.org/10.1016/j.jinsphys.2008.04.013
  28. Hamel, S., Gaillard, J.-M., Yoccoz, N. G., Loison, A., Bonenfant, C., & Descamps, S. (2010). Fitness costs of reproduction depend on life speed: Empirical evidence from mammalian populations. Ecology Letters, 13, 915-935. https://doi.org/10.1111/j.1461-0248.2010.01478.x
  29. Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: The devil in the details. Trends in Ecology & Evolution, 22, 80-86. https://doi.org/10.1016/j.tree.2006.10.008
  30. Horn, L., Leips, J., & Starz-Gaiano, M. (2014). Phagocytic ability declines with age in adult Drosophila hemocytes. Aging Cell, 13, 719-728. https://doi.org/10.1111/acel.12227
  31. Hughes, P. W. (2017). Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecology and Evolution, 7, 8232-8261. https://doi.org/10.1002/ece3.3341
  32. Isaac, J. L., & Johnson, C. N. (2005). Terminal reproductive effort in a marsupial. Biology Letters, 1, 271-275. https://doi.org/10.1098/rsbl.2005.0326
  33. Jehan, C., Chogne, M., Rigaud, T., & Moret, Y. (2020). Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evolutionary Biolology, 20, 18. https://doi.org/10.1186/s12862-020-1586-x
  34. Jönsson, K. I., & Jonsson, K. I. (1997). Capital and income breeding as alternative tactics of resource use in reproduction. Oikos, 78, 57-66. https://doi.org/10.2307/3545800
  35. Jurat-Fuentes, J. L., & Jackson, T. A. (2012). Bacterial entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 265-349). https://doi.org/10.1016/B978-0-12-384984-7.00008-7
  36. Kasumovic, M. M., Brooks, R. C., & Andrade, M. C. B. (2009). Body condition but not dietary restriction prolongs lifespan in a semelparous capital breeder. Biology Letters, 5, 636-638. https://doi.org/10.1098/rsbl.2009.0335
  37. Khan, I., Agashe, D., & Rolff, J. (2017). Early-life inflammation, immune response and ageing. Proceedings of the Royal Society B: Biological Sciences, 284, 1850. https://doi.org/10.1098/rspb.2017.0125
  38. Khan, I., Prakash, A., & Agashe, D. (2016). Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. Journal of Animal Ecology, 85, 291-301. https://doi.org/10.1111/1365-2656.12433
  39. Kim, S. Y., Kim, H. G., Yoon, H. J., Lee, K. Y., & Kim, N. J. (2017). Nutritional analysis of alternative feed ingredients and their effects on the larval growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Entomological Research, 47, 194-202. https://doi.org/10.1111/1748-5967.12236
  40. Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301-304. https://doi.org/10.1038/270301a0
  41. Krams, I., Daukšte, J., Kivleniece, I., Kaasik, A., Krama, T., Freeberg, T. M., & Rantala, M. J. (2013). Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Current Zoology, 59, 340-346. https://doi.org/10.1093/czoolo/59.3.340
  42. Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouvé, C., Besson, D., Chastel, O., & Weimerskirch, H. (2010). Patterns of aging in the long-lived wandering albatross. Proceedings of National Academy of Sciences of the United States of America, 107, 6370-6375. https://doi.org/10.1073/pnas.0911181107
  43. Lee, H. S., Cho, M. Y., Lee, K. M., Kwon, T. H., Homma, K., Natori, S., & Lee, B. L. (1999). The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases with accession number AB020738.1. FEBS Letters, 444, 255-259. https://doi.org/10.1016/S0014-5793(99)00067-8
  44. Lemaître, J.-F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., Plard, F., & Gaillard, J.-M. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society B: Biological Sciences, 282, 20150209. https://doi.org/10.1098/rspb.2015.0209
  45. Lemaître, J. F., & Gaillard, J. M. (2017). Reproductive senescence: New perspectives in the wild. Biological Reviews, 92, 2182-2199. https://doi.org/10.1111/brv.12328
  46. Licastro, F., Candore, G., Lio, D., Porcellini, E., Colonna-Romano, G., Franceschi, C., & Caruso, C. (2005). Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immunity and Ageing, 2, 8. https://doi.org/10.1186/1742-4933-2-8
  47. Loison, A., Festa-Bianchet, M., Gaillard, J.-M., Jorgenson, J. T., & Jullien, J.-M. (1999). Age-specific survival in five populations of ungulates: Evidence of senescence. Ecology, 80, 2539-2554. https://doi.org/10.1890/0012-9658(1999)080[2539:ASSIFP]2.0.CO;2
  48. Martin, K. (1995). Patterns and mechanisms for age-dependent reproduction and survival in birds. American Zoologist, 35, 340-348. https://doi.org/10.1093/icb/35.4.340
  49. McKean, K. A., & Nunney, L. (2001). Increased sexual activity reduces male immune function in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 7904-7909. https://doi.org/10.1073/pnas.131216398
  50. McNamara, J. M., & Houston, A. I. (1996). State-dependent life histories. Nature, 380, 215-221. https://doi.org/10.1038/380215a0
  51. McNamara, J. M., Houston, A. I., Barta, Z., Scheuerlein, A., & Fromhage, L. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proceedings of the Royal Society B: Biological Sciences, 276, 4061-4066. https://doi.org/10.1098/rspb.2009.0959
  52. Moore, P. J., & Sharma, S. (2005). A delay in age at first mating results in the loss of future reproductive potential via apoptosis. Evolution & Development, 7, 216-222. https://doi.org/10.1111/j.1525-142X.2005.05024.x
  53. Morales-Ramos, J. A., Kelstrup, H. C., Rojas, M. G., & Emery, V. (2019). Body mass increase induced by eight years of artificial selection in the yellow mealworm (Coleoptera: Tenebrionidae) and life history trade-offs. Journal of Insect Science, 19, 4. https://doi.org/10.1093/jisesa/iey110
  54. Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C., & Moret, Y. (2012). Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos, 121, 1828-1832. https://doi.org/10.1111/j.1600-0706.2011.19933.x
  55. Moret, Y. (2006). ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society B: Biological Sciences, 273, 1399-1405. https://doi.org/10.1098/rspb.2006.3465
  56. Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290, 1166-1168. https://doi.org/10.1126/science.290.5494.1166
  57. Moret, Y., & Siva-Jothy, M. T. (2003). Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society B: Biological Sciences, 270, 2475-2480. https://doi.org/10.1098/rspb.2003.2511
  58. Morin, A., Rughetti, M., Rioux-Paquette, S., & Festa-Bianchet, M. (2016). Older conservatives: Reproduction in female Alpine chamois (Rupicapra rupicapra) is increasingly risk-averse with age. Canadian Journal of Zoology, 94, 311-321.
  59. Nappi, A. J., & Ottaviani, E. (2000). Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays, 22, 469-480. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<469:AID-BIES9>3.0.CO;2-4
  60. Nussey, D. H., Coulson, T., Delorme, D., Clutton-Brock, T. H., Pemberton, J. M., Festa-Bianchet, M., & Gaillard, J. (2011). Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology, 92, 1936-1947. https://doi.org/10.1890/11-0308.1
  61. Nussey, D. H., Coulson, T., Festa-Bianchet, M., & Gaillard, J.-M. (2008). Measuring senescence in wild animal populations: Towards a longitudinal approach. Functional Ecology, 22, 393-406. https://doi.org/10.1111/j.1365-2435.2008.01408.x
  62. Nussey, D. H., Kruuk, L. E., Donald, A., Fowlie, M., & Clutton-Brock, T. H. (2006). The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecology Letters, 9, 1342-1350. https://doi.org/10.1111/j.1461-0248.2006.00989.x
  63. Pianka, E. R. (1976). Natural selection of optimal reproductive tactics. American Zoologist, 16, 775-784. https://doi.org/10.1093/icb/16.4.775
  64. Pursall, E. R., & Rolff, J. (2011). Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE, 6, e19972. https://doi.org/10.1371/journal.pone.0019972
  65. R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
  66. Reed, T. E., Kruuk, L. E. B., Wanless, S., Frederiksen, M., Cunningham, E. J. A., & Harris, M. P. (2008). Reproductive senescence in a long-lived seabird: Rates of decline in late-life performance are associated with varying costs of early reproduction. The American Naturalist, 171, E89-E101. https://doi.org/10.1086/524957
  67. Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44, 257-267. https://doi.org/10.2307/3544698
  68. Ricklefs, R. E., & Wikelski, M. (2002). The physiology/life-history nexus. Trends in Ecology & Evolution, 17, 462-468. https://doi.org/10.1016/S0169-5347(02)02578-8
  69. Rigby, M. C., & Moret, Y. (2000). Life-history trade-offs with immune defenses. In R. Poulin, S. Morand, & A. Shorping (Eds.), Evolutionary biology of host-parasite relationships: Theory meets reality (pp. 129-142). Elsevier.
  70. Roff, D. A. (1992). The evolution of life histories: Theory and analysis. Chapman & Hall.
  71. Sadd, B. M., & Siva-Jothy, M. T. (2006). Self-harm caused by an insect's innate immunity. Proceedings of the Royal Society B. Biological Sciences, 273, 2571-2574. https://doi.org/10.1098/rspb.2006.3574
  72. Smith, A. N., Belk, M. C., & Creighton, J. C. (2014). Residency time as an indicator of reproductive restraint in male burying beetles. PLoS ONE, 9, e109165. https://doi.org/10.1371/journal.pone.0109165
  73. Stearns, S. C. (1989). Tradeoffs in life history evolution. Functional Ecology, 3, 259-268. https://doi.org/10.2307/2389364
  74. Stearns, S. C. (1992). The evolution of life histories. Oxford University Press.
  75. Tarwater, C. E., & Arcese, P. (2017). Age and years to death disparately influence reproductive allocation in a short-lived bird. Ecology, 98, 1248-2254. https://doi.org/10.1002/ecy.1851
  76. Templeton, G. F. (2011). A two-step approach for transforming continuous variables to normal: Implications and recommendations for IS research. Communications of the Association for Information Systems, 28, 41-58. https://doi.org/10.17705/1CAIS.02804
  77. Theopold, U., Schmidt, O., Söderhäll, K., & Dushay, M. S. (2004). Coagulation in arthropods: Defence, wound closure and healing. Trends in Immunology, 25, 289-294. https://doi.org/10.1016/j.it.2004.03.004
  78. Therneau, T. (2012). Coxme: Mixed effects Cox models. Retrieved from http://CRAN.R-project.org/package=coxme
  79. Therneau, T. (2020). A package for survival analysis in R. R package version 3.1-12. Retrieved from https://CRAN.R-project.org/package=survival
  80. Urbański, A., Adamski, Z., & Rosiński, G. (2018). Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor. Micron, 104, 8-20. https://doi.org/10.1016/j.micron.2017.10.005
  81. van de Pol, M., & Verhulst, S. (2006). Age-dependent traits: A new statistical model to separate within- and between-individual effects. The American Naturalist, 167, 766-773. https://doi.org/10.1086/503331
  82. van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128, 137-142. https://doi.org/10.1086/284547
  83. Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439-454. https://doi.org/10.2307/2061224
  84. Vigneron, A., Jehan, C., Rigaud, T., & Moret, Y. (2019). Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00138
  85. Weladji, R. B., Mysterud, A., Holand, Ø., & Lenvik, D. (2002). Age-related reproductive effort in reindeer (Rangifer tarandus): Evidence of senescence. Oecologia, 13(79-82), 138. https://doi.org/10.1007/s00442-001-0864-6
  86. Williams, G. C. (1966). Natural selection, the costs of reproduction, and a refinement of Lack's principle. The American Naturalist, 100, 687-690. https://doi.org/10.1086/282461
  87. Zanchi, C., Moret, Y., & Gillingham, M. A. F. (2019). Relationship between early body condition, energetic reserves and fitness in an iteroparous insect. BioRxiv, 774893. https://doi.org/10.1101/774893
  88. Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J., & Moret, Y. (2011). Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. Journal of Animal Ecology, 80, 1174-1183. https://doi.org/10.1111/j.1365-2656.2011.01872.x

MeSH Term

Aging
Animals
Coleoptera
Female
Fertility
Longevity
Reproduction

Word Cloud

Created with Highcharts 10.0.0reproductionreproductivesurvivalinvestmentfemalesterminalsenescencelatelifehypothesessomaticrestraintlate-lifehypothesiseffortpost-reproductioncostlongevityindividualsincreaseallocationfutureeffectsage-relatedmealwormbeetlemolitorinsectfecundityfounddeclinefemaleimmuneexpenseLate-lifepriorityschemelife-historystrategiestheoriesmayexplainindividualpatternspredictsprospectsdecreasetwopredictreduceddifferentreasonsReproductiveRestraintrestrainsustaingaintimereproducingwhereasSenescenceprocessconstraineddeteriorationimplycostlycontrastedimplicationstermsmaintenanceTestingrequiresproperconsiderationage-dependentfunctionsexperimentallytestedthreeTenebrioiteroparousincomebreedermanipulatedage-specificobservedmanipulationimmunocompetencemeasurementprotectionexhibitacceleratedearlysignificanteffectabilitysurvivebacterialinfectiondespitecellsdepletedpost-infectiondeterioratedagepartlyexplainedparametersImportantlyTsenescingconsistentstrategyRatherresultssuggestallocateresourcesaccordingfavouringlinealsoshowsrelativelyshort-livedcanevolvehithertoknownlong-livedanimalsputsperspectiveroleevolutioninsect:Terminalageinginnateimmunityhistory

Similar Articles

Cited By