Regulation of zebrafish fin regeneration by vitamin D signaling.

Anzhi Chen, Yanchao Han, Kenneth D Poss
Author Information
  1. Anzhi Chen: Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
  2. Yanchao Han: Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
  3. Kenneth D Poss: Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. ORCID

Abstract

BACKGROUND: Vitamin D is an essential nutrient that has long been known to regulate skeletal growth and integrity. In models of major appendage regeneration, treatment with Vitamin D analogs has been reported to improve aspects of zebrafish fin regeneration in specific disease or gene misexpression contexts, but also to disrupt pattern in regenerating salamander limbs. Recently, we reported strong mitogenic roles for Vitamin D signaling in several zebrafish tissues throughout life stages, including epidermal cells and osteoblasts of adult fins. To our knowledge, molecular genetic approaches to dissect Vitamin D function in appendage regeneration have not been described.
RESULTS: Using a knock-in GFP reporter for the expression of the Vitamin D target gene and negative regulator cyp24a1, we identified active Vitamin D signaling in adult zebrafish fins during tissue homeostasis and regeneration. Transgenic expression of cyp24a1 or a dominant-negative Vitamin D receptor (VDR) inhibited regeneration of amputated fins, whereas global Vitamin D treatment accelerated regeneration. Using tissue regeneration enhancer elements, we found that local enhancement of VDR expression could improve regeneration with low doses of a Vitamin D analog.
CONCLUSIONS: Vitamin D signaling enhances the efficacy of fin regeneration in zebrafish.

Keywords

References

  1. Best Pract Res Clin Endocrinol Metab. 2011 Aug;25(4):543-59 [PMID: 21872797]
  2. Development. 2013 Feb 1;140(3):660-6 [PMID: 23293297]
  3. Arch Biochem Biophys. 2007 Apr 15;460(2):262-73 [PMID: 17207766]
  4. Arch Biochem Biophys. 2012 Jul 1;523(1):9-18 [PMID: 22100522]
  5. Nutr Rev. 1997 Sep;55(9):342-51 [PMID: 9329272]
  6. Science. 2005 Dec 23;310(5756):1957-60 [PMID: 16373575]
  7. J Clin Invest. 2006 Dec;116(12):3150-9 [PMID: 17099775]
  8. Wound Repair Regen. 2017 May;25(3):432-442 [PMID: 28380670]
  9. Genes Dev. 1995 May 1;9(9):1033-45 [PMID: 7744246]
  10. Development. 2013 Sep;140(18):3754-64 [PMID: 23924636]
  11. Curr Biol. 2018 Dec 17;28(24):3937-3947.e4 [PMID: 30503623]
  12. Dev Cell. 2011 Mar 15;20(3):397-404 [PMID: 21397850]
  13. Am J Clin Nutr. 2008 Aug;88(2):582S-586S [PMID: 18689406]
  14. Dev Biol. 2000 Jun 15;222(2):347-58 [PMID: 10837124]
  15. Arch Biochem Biophys. 1999 Sep 1;369(1):11-23 [PMID: 10462436]
  16. Dev Biol. 2006 Nov 15;299(2):438-54 [PMID: 16959242]
  17. J Biol Chem. 2012 Dec 7;287(50):42324-32 [PMID: 23074218]
  18. Biomol Eng. 2007 Dec;24(6):613-8 [PMID: 17936069]
  19. Mech Dev. 2018 Oct;153:1-9 [PMID: 30096415]
  20. Nature. 1992 Jan 30;355(6359):446-9 [PMID: 1310351]
  21. Dev Biol. 2002 Apr 1;244(1):75-84 [PMID: 11900460]
  22. Circulation. 2014 Sep 16;130(12):976-86 [PMID: 25015343]
  23. Development. 2013 Apr;140(7):1412-23 [PMID: 23462472]
  24. Cell. 2016 Jun 16;165(7):1598-1608 [PMID: 27315477]
  25. Nature. 2016 Apr 14;532(7598):201-6 [PMID: 27049946]
  26. Nature. 2015 Aug 13;524(7564):230-3 [PMID: 26168398]
  27. Dev Growth Differ. 1995 Oct;37(5):497-503 [PMID: 37280892]
  28. World J Stem Cells. 2020 Jul 26;12(7):604-611 [PMID: 32843916]
  29. Development. 2005 Dec;132(23):5173-83 [PMID: 16251209]
  30. Bone Miner. 1990 Dec;11(3):267-72 [PMID: 2085680]
  31. Development. 2013 Apr;140(7):1402-11 [PMID: 23344707]
  32. Development. 2012 Jan;139(1):107-16 [PMID: 22096078]
  33. Nat Genet. 1997 Aug;16(4):391-6 [PMID: 9241280]
  34. Trends Genet. 2017 Aug;33(8):553-565 [PMID: 28648452]
  35. Science. 2000 Sep 1;289(5484):1524-9 [PMID: 10968783]
  36. Eur J Appl Physiol. 2019 Apr;119(4):825-839 [PMID: 30830277]
  37. J Bone Miner Res. 2011 Nov;26(11):2710-8 [PMID: 21812032]
  38. Cell Rep. 2016 Oct 4;17(2):458-468 [PMID: 27705794]
  39. Chem Biol. 2014 Mar 20;21(3):319-29 [PMID: 24529992]
  40. Dev Cell. 2019 Mar 25;48(6):853-863.e5 [PMID: 30713073]
  41. Trends Genet. 2015 Jun;31(6):336-43 [PMID: 25929514]

Grants

  1. R01 AR076342/NIAMS NIH HHS
  2. R35 HL150713/NHLBI NIH HHS

MeSH Term

Animal Fins
Animals
Animals, Genetically Modified
Vitamin D
Zebrafish
Zebrafish Proteins

Chemicals

Zebrafish Proteins
Vitamin D

Word Cloud

Created with Highcharts 10.0.0DregenerationvitaminzebrafishsignalingfinsfinexpressiontissueVitaminappendagetreatmentreportedimprovegeneadultUsingcyp24a1VDRenhancerelementsBACKGROUND:essentialnutrientlongknownregulateskeletalgrowthintegritymodelsmajoranalogsaspectsspecificdiseasemisexpressioncontextsalsodisruptpatternregeneratingsalamanderlimbsRecentlystrongmitogenicrolesseveraltissuesthroughoutlifestagesincludingepidermalcellsosteoblastsknowledgemoleculargeneticapproachesdissectfunctiondescribedRESULTS:knock-inGFPreportertargetnegativeregulatoridentifiedactivehomeostasisTransgenicdominant-negativereceptorinhibitedamputatedwhereasglobalacceleratedfoundlocalenhancementlowdosesanalogCONCLUSIONS:enhancesefficacyRegulation

Similar Articles

Cited By (9)