Detection of Zika and dengue viruses in wild-caught mosquitoes collected during field surveillance in an environmental protection area in S��o Paulo, Brazil.

Karolina Morales Barrio-Nuevo, Mariana Sequetin Cunha, Adriana Luchs, Aristides Fernandes, Iray Maria Rocco, Luis Filipe Mucci, Renato Pereira de Souza, Ant��nio Ralph Medeiros-Sousa, Walter Ceretti-Junior, Mauro Toledo Marrelli
Author Information
  1. Karolina Morales Barrio-Nuevo: Epidemiology Department, School of Public Health, University of S��o Paulo, S��o Paulo, Brazil.
  2. Mariana Sequetin Cunha: Vector-borne Disease Laboratory, Virology Center, Adolfo Lutz Institute, S��o Paulo, Brazil.
  3. Adriana Luchs: Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, S��o Paulo, Brazil.
  4. Aristides Fernandes: Epidemiology Department, School of Public Health, University of S��o Paulo, S��o Paulo, Brazil.
  5. Iray Maria Rocco: Vector-borne Disease Laboratory, Virology Center, Adolfo Lutz Institute, S��o Paulo, Brazil.
  6. Luis Filipe Mucci: Superintendency for the Control of Endemic Diseases, State Health Department, S��o Paulo, Brazil.
  7. Renato Pereira de Souza: Vector-borne Disease Laboratory, Virology Center, Adolfo Lutz Institute, S��o Paulo, Brazil.
  8. Ant��nio Ralph Medeiros-Sousa: Epidemiology Department, School of Public Health, University of S��o Paulo, S��o Paulo, Brazil.
  9. Walter Ceretti-Junior: Epidemiology Department, School of Public Health, University of S��o Paulo, S��o Paulo, Brazil.
  10. Mauro Toledo Marrelli: Epidemiology Department, School of Public Health, University of S��o Paulo, S��o Paulo, Brazil. ORCID

Abstract

Species of the genus Flavivirus are widespread in Brazil and are a major public health concern. The country's largest city, S��o Paulo, is in a highly urbanized area with a few forest fragments which are commonly used for recreation. These can be considered to present a potential risk of flavivirus transmission to humans as they are home simultaneously to vertebrate hosts and mosquitoes that are potential flavivirus vectors. The aim of this study was to conduct flavivirus surveillance in field-collected mosquitoes in the Capivari-Monos Environmental Protection Area (EPA) and identify the flavivirus species by sequence analysis in flavivirus IFA-positive pools. Monthly mosquito collections were carried out from March 2016 to April 2017 with CO2-baited CDC light traps. Specimens were identified morphologically and grouped in pools of up to 10 individuals according to their taxonomic category. A total of 260 pools of non-engorged females were inoculated into C6/36 cell culture, and the cell suspensions were analyzed by indirect immunofluorescence assay (IFA) after the incubation period. IFA-positive pools were tested by qRT-PCR with genus-specific primers targeting the flavivirus NS5 gene to confirm IFA-positive results and sequenced to identify the species. Anopheles cruzii (19.5%) and Wyeomyia confusa (15.3%) were the most frequent vector species collected. IFA was positive for flaviviruses in 2.3% (6/260) of the sample pools. This was confirmed by qRT-PCR in five pools (83.3%). All five flavivirus-positive pools were successfully sequenced and the species identified. DENV serotype 2 (DENV-2) was detected in Culex spp. and Culex vaxus pools, while ZIKV was identified in An. cruzii, Limatus durhamii and Wy. confusa pools. To the best of our knowledge, detection of flavivirus species of medical importance has never previously been reported in these species of wild-caught mosquitoes. The finding of DENV-2 and ZIKV circulating in wild mosquitoes suggests the existence of an enzootic cycle in the area. In-depth studies of DENV-2 and ZIKV, including investigation of mosquito infection, vector competence and infection in sylvatic hosts, are needed to shed light on the transmission dynamics of these important viruses and the potential risk of future outbreaks of DENV-2 and ZIKV infections in the region.

References

  1. Rev Saude Publica. 1995 Jun;29(3):183-91 [PMID: 8539529]
  2. Ann N Y Acad Sci. 2001 Dec;951:13-24 [PMID: 11797771]
  3. Science. 2016 Apr 15;352(6283):345-349 [PMID: 27013429]
  4. PLoS Negl Trop Dis. 2017 Nov 16;11(11):e0005933 [PMID: 29145400]
  5. Rev Saude Publica. 2001 Oct;35(5):461-6 [PMID: 11723518]
  6. Emerg Infect Dis. 2009 Sep;15(9):1347-50 [PMID: 19788800]
  7. Emerg Microbes Infect. 2017 Aug 9;6(8):e69 [PMID: 28790458]
  8. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  9. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  10. Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20 [PMID: 12995440]
  11. Rev Saude Publica. 2016 Jun 27;50: [PMID: 27355468]
  12. Acta Trop. 2016 May;157:73-83 [PMID: 26829359]
  13. Rev Saude Publica. 1985 Apr;19(2):190-1 [PMID: 4089514]
  14. Med Vet Entomol. 2019 Sep;33(3):397-406 [PMID: 30887540]
  15. Am J Trop Med Hyg. 1984 Jan;33(1):158-65 [PMID: 6364855]
  16. Trans R Soc Trop Med Hyg. 1970;64(4):647 [PMID: 4991945]
  17. Malar J. 2019 Apr 2;18(1):110 [PMID: 30940142]
  18. Arch Virol. 2020 Aug;165(8):1863-1868 [PMID: 32474687]
  19. Parasit Vectors. 2018 Feb 1;11(1):77 [PMID: 29391071]
  20. Virol J. 2013 Feb 14;10:58 [PMID: 23410000]
  21. Mem Inst Oswaldo Cruz. 2014 Aug;109(5):618-33 [PMID: 25185003]
  22. Bull World Health Organ. 1966;35(1):78-9 [PMID: 20604276]
  23. Virol J. 2013 May 10;10:140 [PMID: 23663381]
  24. Antiviral Res. 2010 Feb;85(2):328-45 [PMID: 19857523]
  25. Trop Med Int Health. 2010 Nov;15(11):1281-8 [PMID: 20976871]
  26. Infect Dis Poverty. 2018 Jul 16;7(1):75 [PMID: 30021614]
  27. Clin Microbiol Rev. 1998 Jul;11(3):480-96 [PMID: 9665979]
  28. Sci Rep. 2018 Oct 30;8(1):16034 [PMID: 30375482]
  29. Microbes Infect. 2000 Nov;2(13):1643-9 [PMID: 11113383]
  30. Rev Saude Publica. 2003 Jun;37(3):275-9 [PMID: 12792675]
  31. N Engl J Med. 2016 Feb 18;374(7):601-4 [PMID: 26761185]
  32. Rev Inst Med Trop Sao Paulo. 1994 May-Jun;36(3):265-74 [PMID: 7855491]
  33. J Gen Virol. 2013 Oct;94(Pt 10):2202-2207 [PMID: 23851439]
  34. J Am Mosq Control Assoc. 2016 Dec;32(4):329-332 [PMID: 28206862]
  35. Am J Trop Med Hyg. 1999 Feb;60(2):319-21 [PMID: 10072159]
  36. J Clin Virol. 2015 Mar;64:160-73 [PMID: 25453327]
  37. Vector Borne Zoonotic Dis. 2010 Nov;10(9):875-84 [PMID: 20370434]
  38. Parasit Vectors. 2019 Oct 2;12(1):463 [PMID: 31578140]
  39. J Vector Ecol. 2012 Dec;37(2):316-24 [PMID: 23181854]
  40. Rev Soc Bras Med Trop. 2011 Jul-Aug;44(4):528-30 [PMID: 21860907]
  41. Rev Inst Med Trop Sao Paulo. 2005 Sep-Oct;47(5):281-5 [PMID: 16302112]
  42. BMC Ecol. 2014 Nov 11;14:30 [PMID: 25384802]
  43. PLoS Negl Trop Dis. 2013 Jul 18;7(7):e2318 [PMID: 23875051]
  44. PLoS Negl Trop Dis. 2009;3(4):e423 [PMID: 19399166]
  45. PLoS One. 2015 Feb 26;10(2):e0117849 [PMID: 25719412]
  46. Sci Rep. 2017 Dec 19;7(1):17826 [PMID: 29259304]
  47. Bull Soc Pathol Exot Filiales. 1986;79(3):313-22 [PMID: 3769119]
  48. Am J Trop Med Hyg. 2004 Nov;71(5):636-8 [PMID: 15569797]
  49. Rev Inst Med Trop Sao Paulo. 1994 Jul-Aug;36(4):343-53 [PMID: 7732265]
  50. Acta Trop. 2020 May;205:105401 [PMID: 32081658]
  51. J Microbiol. 2017 Mar;55(3):204-219 [PMID: 28243937]
  52. Rev Saude Publica. 2017 Apr 10;51:30 [PMID: 28423140]
  53. Sci Rep. 2019 Apr 2;9(1):5474 [PMID: 30940867]
  54. Viruses. 2018 Aug 16;10(8): [PMID: 30115888]

MeSH Term

Animals
Anopheles
Brazil
Culex
Dengue Virus
Female
Mosquito Vectors
Population Surveillance
Reverse Transcriptase Polymerase Chain Reaction
Viral Nonstructural Proteins
Wilderness
Zika Virus

Chemicals

NS5 protein, flavivirus
Viral Nonstructural Proteins

Word Cloud

Created with Highcharts 10.0.0poolsflavivirusspeciesmosquitoesDENV-2ZIKVareapotentialIFA-positiveidentified3%BrazilS��oPaulorisktransmissionhostssurveillanceidentifymosquitolightcellIFAqRT-PCRsequencedcruziiconfusavectorcollected2fiveCulexwild-caughtinfectionvirusesSpeciesgenusFlaviviruswidespreadmajorpublichealthconcerncountry'slargestcityhighlyurbanizedforestfragmentscommonlyusedrecreationcanconsideredpresenthumanshomesimultaneouslyvertebratevectorsaimstudyconductfield-collectedCapivari-MonosEnvironmentalProtectionAreaEPAsequenceanalysisMonthlycollectionscarriedMarch2016April2017CO2-baitedCDCtrapsSpecimensmorphologicallygrouped10individualsaccordingtaxonomiccategorytotal260non-engorgedfemalesinoculatedC6/36culturesuspensionsanalyzedindirectimmunofluorescenceassayincubationperiodtestedgenus-specificprimerstargetingNS5geneconfirmresultsAnopheles195%Wyeomyia15frequentpositiveflaviviruses6/260sampleconfirmed83flavivirus-positivesuccessfullyDENVserotypedetectedsppvaxusLimatusdurhamiiWybestknowledgedetectionmedicalimportanceneverpreviouslyreportedfindingcirculatingwildsuggestsexistenceenzooticcycleIn-depthstudiesincludinginvestigationcompetencesylvaticneededsheddynamicsimportantfutureoutbreaksinfectionsregionDetectionZikadenguefieldenvironmentalprotection

Similar Articles

Cited By