Low-Temperature Atomic Layer Deposited Oxide on Titanium Nitride Electrodes Enables Culture and Physiological Recording of Electrogenic Cells.

Michele Dollt, Miriam Reh, Michael Metzger, Gerhard Heusel, Martin Kriebel, Volker Bucher, Günther Zeck
Author Information
  1. Michele Dollt: Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
  2. Miriam Reh: Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
  3. Michael Metzger: Mechanical and Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen, Germany.
  4. Gerhard Heusel: Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
  5. Martin Kriebel: Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
  6. Volker Bucher: Mechanical and Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen, Germany.
  7. Günther Zeck: Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.

Abstract

The performance of electrode arrays insulated by low-temperature atomic layer deposited (ALD) titanium dioxide (TiO) or hafnium dioxide (HfO) for culture of electrogenic cells and for recording of extracellular action potentials is investigated. If successful, such insulation may be considered to increase the stability of future neural implants. Here, insulation of titanium nitride electrodes of microelectrode arrays (MEAs) was performed using ALD of nanometer-sized TiO or hafnium oxide at low temperatures (100-200°C). The electrode properties, impedance, and leakage current were measured and compared. Although electrode insulation using ALD oxides increased the electrode impedance, it did not prevent stable, physiological recordings of electrical activity from electrogenic cells (cardiomyocytes and neurons). The insulation quality, estimated from leakage current measurements, was less than 100 nA/cm in a range of 3 V. Cardiomyocytes were successfully cultured and recorded after 5 days on the insulated MEAs with signal shapes similar to the recordings obtained using uncoated electrodes. Light-induced electrical activity of retinal ganglion cells was recorded using a complementary metal-oxide semiconductor-based MEA insulated with HfO without driving the recording electrode into saturation. The presented results demonstrate that low-temperature ALD-deposited TiO and hafnium oxide are biocompatible and biostable and enable physiological recordings. Our results indicate that nanometer-sized ALD insulation can be used to protect electrodes for long-term biological applications.

Keywords

References

  1. Annu Rev Biomed Eng. 2004;6:41-75 [PMID: 15255762]
  2. Front Neurosci. 2019 Mar 22;13:226 [PMID: 30967754]
  3. J Neurosci Methods. 2002 Mar 15;114(2):135-48 [PMID: 11856564]
  4. Sci Adv. 2017 Jun 09;3(6):e1601649 [PMID: 28630894]
  5. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:890-2 [PMID: 17946870]
  6. PLoS Comput Biol. 2020 Jul 15;16(7):e1007857 [PMID: 32667921]
  7. Adv Mater. 2011 Sep 22;23(36):H268-72 [PMID: 21826747]
  8. Biophys J. 2007 Feb 1;92(3):1096-111 [PMID: 17098803]
  9. ACS Appl Mater Interfaces. 2010 Sep;2(9):2515-20 [PMID: 20738090]
  10. Phys Chem Chem Phys. 2013 Apr 14;15(14):4844-58 [PMID: 23450160]
  11. J Mater Chem B. 2015 Jul 7;3(25):4965-4978 [PMID: 26167283]
  12. J Neural Eng. 2018 Aug;15(4):045003 [PMID: 29717707]
  13. Sci Rep. 2016 May 18;6:26181 [PMID: 27188845]
  14. Biosens Bioelectron. 1990;5(3):223-34 [PMID: 2206490]
  15. Annu Rev Biomed Eng. 2008;10:275-309 [PMID: 18429704]
  16. J Neural Eng. 2016 Apr;13(2):021001 [PMID: 26792176]
  17. J Neurophysiol. 2016 Oct 1;116(4):1684-1693 [PMID: 27486110]
  18. Adv Biosyst. 2017 Nov;1(11):e1700107 [PMID: 32646169]
  19. J Neural Eng. 2014 Apr;11(2):026016 [PMID: 24658358]
  20. Front Neurosci. 2020 May 19;14:405 [PMID: 32508562]
  21. IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1574-9 [PMID: 12549739]
  22. J Neurophysiol. 2012 May;107(10):2742-55 [PMID: 22357789]
  23. Front Mol Neurosci. 2020 Mar 24;13:43 [PMID: 32265651]
  24. Front Neuroeng. 2012 May 04;5:8 [PMID: 22586394]
  25. J Neural Eng. 2016 Apr;13(2):026003 [PMID: 26824680]
  26. Nature. 2013 Apr 11;496(7444):159-61 [PMID: 23579662]
  27. Acta Biomater. 2013 Sep;9(9):8308-17 [PMID: 23727246]
  28. Front Neural Circuits. 2013 Oct 22;7:167 [PMID: 24155695]
  29. Chemphyschem. 2002 Mar 12;3(3):276-84 [PMID: 12503174]
  30. PLoS One. 2018 May 15;13(5):e0196649 [PMID: 29763442]
  31. Anal Bioanal Chem. 2003 Oct;377(3):486-95 [PMID: 12923608]
  32. PLoS One. 2014 Aug 25;9(8):e106047 [PMID: 25153888]

Word Cloud

Created with Highcharts 10.0.0electrodeinsulationALDusinginsulatedTiOhafniumcellselectrodesrecordingsarrayslow-temperaturetitaniumdioxideHfOelectrogenicrecordingactionmicroelectrodeMEAsnanometer-sizedoxideimpedanceleakagecurrentphysiologicalelectricalactivityrecordedMEAresultsperformanceatomiclayerdepositedcultureextracellularpotentialsinvestigatedsuccessfulmayconsideredincreasestabilityfutureneuralimplantsnitrideperformedlowtemperatures100-200°CpropertiesmeasuredcomparedAlthoughoxidesincreasedpreventstablecardiomyocytesneuronsqualityestimatedmeasurementsless100nA/cmrange3VCardiomyocytessuccessfullycultured5dayssignalshapessimilarobtaineduncoatedLight-inducedretinalganglioncomplementarymetal-oxidesemiconductor-basedwithoutdrivingsaturationpresenteddemonstrateALD-depositedbiocompatiblebiostableenableindicatecanusedprotectlong-termbiologicalapplicationsLow-TemperatureAtomicLayerDepositedOxideTitaniumNitrideElectrodesEnablesCulturePhysiologicalRecordingElectrogenicCellsCMOSpotentialatomic-layerdepositioncardiomyocytearrayneuron

Similar Articles

Cited By