Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Regulates Neurite Outgrowth Through the Activation of Akt/mTOR and Erk/mTOR Signaling Pathways.

Wen Wen, Yongchao Wang, Hui Li, Hong Xu, Mei Xu, Jacqueline A Frank, Murong Ma, Jia Luo
Author Information
  1. Wen Wen: Department of Pathology, University of Iowa, Iowa City, IA, United States.
  2. Yongchao Wang: Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States.
  3. Hui Li: Department of Pathology, University of Iowa, Iowa City, IA, United States.
  4. Hong Xu: Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States.
  5. Mei Xu: Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States.
  6. Jacqueline A Frank: Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, United States.
  7. Murong Ma: Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States.
  8. Jia Luo: Department of Pathology, University of Iowa, Iowa City, IA, United States.

Abstract

Neurite outgrowth is essential for brain development and the recovery of brain injury and neurodegenerative diseases. In this study, we examined the role of the neurotrophic factor MANF in regulating neurite outgrowth. We generated MANF knockout (KO) neuro2a (N2a) cell lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and demonstrated that MANF KO N2a cells failed to grow neurites in response to RA stimulation. Using MANF siRNA, this finding was confirmed in human SH-SY5Y neuronal cell line. Nevertheless, MANF overexpression by adenovirus transduction or addition of MANF into culture media facilitated the growth of longer neurites in RA-treated N2a cells. MANF deficiency resulted in inhibition of Akt, Erk, mTOR, and P70S6, and impaired protein synthesis. MANF overexpression on the other hand facilitated the growth of longer neurites by activating Akt, Erk, mTOR, and P70S6. Pharmacological blockade of Akt, Erk or mTOR eliminated the promoting effect of MANF on neurite outgrowth. These findings suggest that MANF positively regulated neurite outgrowth by activating Akt/mTOR and Erk/mTOR signaling pathways.

Keywords

References

  1. PLoS One. 2015 Aug 12;10(8):e0135614 [PMID: 26267903]
  2. Front Endocrinol (Lausanne). 2019 Nov 06;10:765 [PMID: 31781038]
  3. Nat Rev Neurosci. 2002 Sep;3(9):694-704 [PMID: 12209118]
  4. Nat Cell Biol. 2002 Sep;4(9):658-65 [PMID: 12172554]
  5. Neuron. 2016 Oct 19;92(2):358-371 [PMID: 27764671]
  6. Ther Adv Med Oncol. 2015 May;7(3):170-80 [PMID: 26673580]
  7. FASEB J. 2019 Feb;33(2):1727-1741 [PMID: 30211660]
  8. J Comp Neurol. 2009 Jul 1;515(1):116-24 [PMID: 19399876]
  9. J Biol Chem. 2011 Jan 28;286(4):2675-80 [PMID: 21047780]
  10. J Neurotrauma. 2006 Mar-Apr;23(3-4):295-308 [PMID: 16629617]
  11. eNeuro. 2018 Apr 20;5(2): [PMID: 29687079]
  12. Trends Biochem Sci. 2011 Jun;36(6):320-8 [PMID: 21531565]
  13. J Biol Chem. 2012 Jul 27;287(31):25893-904 [PMID: 22637475]
  14. Mol Neurobiol. 2006 Apr;33(2):155-79 [PMID: 16603794]
  15. Front Cell Dev Biol. 2016 Feb 16;4:9 [PMID: 26909348]
  16. Dev Biol. 2012 Oct 15;370(2):237-49 [PMID: 22898306]
  17. Neurosignals. 2006-2007;15(5):249-58 [PMID: 17496426]
  18. Neurobiol Dis. 2017 Jan;97(Pt B):90-102 [PMID: 27425895]
  19. Mol Cell Neurosci. 2008 Nov;39(3):356-71 [PMID: 18718866]
  20. eNeuro. 2018 May 10;5(2): [PMID: 29756027]
  21. Nat Cell Biol. 2003 Jul;5(7):599-609 [PMID: 12833063]
  22. Biochim Biophys Acta. 2007 Aug;1773(8):1263-84 [PMID: 17126425]
  23. Exp Neurol. 2017 May;291:120-133 [PMID: 28131727]
  24. Cell Tissue Res. 2015 Jan;359(1):267-78 [PMID: 25080065]
  25. Mol Ther. 2018 Jan 3;26(1):238-255 [PMID: 29050872]
  26. Cell Biochem Funct. 2020 Jul 1;: [PMID: 32613670]
  27. Front Mol Neurosci. 2014 Apr 23;7:28 [PMID: 24795562]
  28. J Biol Chem. 2013 Feb 8;288(6):4209-25 [PMID: 23255601]
  29. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2429-34 [PMID: 19164766]
  30. Anat Rec (Hoboken). 2019 Aug;302(8):1261-1267 [PMID: 30951263]
  31. Front Mol Neurosci. 2018 May 29;11:176 [PMID: 29896089]
  32. J Neurosci. 2009 Jul 29;29(30):9651-9 [PMID: 19641128]
  33. J Mol Neurosci. 2003 Apr;20(2):173-88 [PMID: 12794311]
  34. Neurochem Int. 2018 Oct;119:115-119 [PMID: 28711654]
  35. PLoS One. 2014 Feb 28;9(2):e90433 [PMID: 24587361]
  36. Science. 2016 Jul 1;353(6294):aaf3646 [PMID: 27365452]
  37. Int Rev Cell Mol Biol. 2013;301:95-156 [PMID: 23317818]
  38. Cell Mol Life Sci. 2009 Sep;66(18):2975-84 [PMID: 19504044]
  39. Front Neurol. 2019 Aug 02;10:835 [PMID: 31428042]
  40. Eur J Med Chem. 2016 Feb 15;109:314-41 [PMID: 26807863]
  41. Curr Opin Neurobiol. 2018 Dec;53:57-65 [PMID: 29894898]
  42. Mol Cell Biochem. 2012 Apr;363(1-2):35-41 [PMID: 22120531]
  43. Neuron. 2014 Jan 22;81(2):349-65 [PMID: 24462098]
  44. Bioarchitecture. 2013 Jul-Aug;3(4):86-109 [PMID: 24002528]
  45. Circ Res. 2008 Nov 21;103(11):1249-58 [PMID: 18927462]
  46. J Biol Chem. 2020 Jan 24;295(4):926-939 [PMID: 31819006]
  47. Exp Cell Res. 2008 Aug 1;314(13):2454-67 [PMID: 18561914]
  48. Front Mol Neurosci. 2017 Mar 17;10:76 [PMID: 28367115]
  49. Dev Neurobiol. 2015 Jun;75(6):569-83 [PMID: 25649254]
  50. Anal Biochem. 2020 Mar 15;593:113608 [PMID: 32007473]
  51. J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94 [PMID: 19812304]
  52. Alcohol Clin Exp Res. 2019 Jan;43(1):69-78 [PMID: 30403409]
  53. Biochem Biophys Res Commun. 2013 Oct 18;440(2):330-5 [PMID: 24076387]
  54. Exp Neurol. 2010 Sep;225(1):104-13 [PMID: 20685313]
  55. Behav Brain Res. 2015 Sep 15;291:1-11 [PMID: 25975173]
  56. Cell Struct Funct. 2007;32(1):41-50 [PMID: 17507765]
  57. Immunopharmacol Immunotoxicol. 2016 Jun;38(3):205-13 [PMID: 27075782]
  58. Prog Neurobiol. 2004 Feb;72(3):183-93 [PMID: 15130709]
  59. Nature. 2007 Jul 5;448(7149):73-7 [PMID: 17611540]
  60. Biochem Soc Trans. 2006 Dec;34(Pt 6):1287-90 [PMID: 17073803]
  61. Exp Gerontol. 2017 Mar;89:45-56 [PMID: 28099881]
  62. J Neurosci. 1982 Aug;2(8):1157-75 [PMID: 7108587]
  63. Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3605-3617 [PMID: 30251680]
  64. Mol Cell Neurosci. 2000 Oct;16(4):283-95 [PMID: 11085868]
  65. Exp Gerontol. 2017 Dec 15;100:77-86 [PMID: 29079145]
  66. Cell. 2005 Apr 22;121(2):179-93 [PMID: 15851026]
  67. Neurol Sci. 2017 Oct;38(10):1741-1746 [PMID: 28685189]
  68. Front Neurosci. 2019 Aug 02;13:790 [PMID: 31427916]
  69. eNeuro. 2017 Sep 29;4(5): [PMID: 29082311]

Grants

  1. I01 BX001721/BLRD VA
  2. R01 AA015407/NIAAA NIH HHS
  3. R01 AA017226/NIAAA NIH HHS

Word Cloud

Created with Highcharts 10.0.0MANFoutgrowthneuriteN2aneuritesAktErkmTORAkt/mTORErk/mTORNeuritebrainneurotrophicfactorKOcellcellsneuronaloverexpressionfacilitatedgrowthlongerP70S6proteinsynthesisactivatingessentialdevelopmentrecoveryinjuryneurodegenerativediseasesstudyexaminedroleregulatinggeneratedknockoutneuro2alinesusingclusteredregularlyinterspacedshortpalindromicrepeatsCRISPR/Cas9demonstratedfailedgrowresponseRAstimulationUsingsiRNAfindingconfirmedhumanSH-SY5YlineNeverthelessadenovirustransductionadditionculturemediaRA-treateddeficiencyresultedinhibitionimpairedhandPharmacologicalblockadeeliminatedpromotingeffectfindingssuggestpositivelyregulatedsignalingpathwaysMesencephalicAstrocyte-DerivedNeurotrophicFactorRegulatesOutgrowthActivationSignalingPathwaysdifferentiation

Similar Articles

Cited By