Population Structure of in Emilia-Romagna (Italy) and Implications on Whole Genome Sequencing Surveillance of Listeriosis.

Erika Scaltriti, Luca Bolzoni, Caterina Vocale, Marina Morganti, Ilaria Menozzi, Maria Carla Re, Stefano Pongolini
Author Information
  1. Erika Scaltriti: Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy.
  2. Luca Bolzoni: Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy.
  3. Caterina Vocale: Operating Unit of Clinical Microbiology, Regional Reference Center for Microbiological Emergencies, St. Orsola-Malpighi Polyclinic, Bologna, Italy.
  4. Marina Morganti: Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy.
  5. Ilaria Menozzi: Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy.
  6. Maria Carla Re: Operating Unit of Clinical Microbiology, Regional Reference Center for Microbiological Emergencies, St. Orsola-Malpighi Polyclinic, Bologna, Italy.
  7. Stefano Pongolini: Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy.

Abstract

The population structure of human isolates of in Emilia-Romagna, Italy, from 2012 to 2018 was investigated with the aim of evaluating the presence of genomic clusters indicative of possible outbreaks, the proportion of cluster-associated vs. sporadic isolates and different methods and metrics of genomic analysis for use in routine surveillance. In the 2012-2018 period the notification rate of confirmed invasive cases in Emilia-Romagna was 0.91 per 100,000 population per year, more than twice the average rate of EU countries. Out of the total 283 cases, 268 (about 95%) isolates were typed through whole genome sequencing (WGS) for cluster detection with methods based on core-genome multi-locus sequence typing and single nucleotide polymorphisms. Between 66 and 72% of listeriosis cases belonged to genomic clusters which included up to 27 cases and lasted up to 5 years. This proportion of cluster-associated cases is higher than previously estimated in other European studies. Rarefaction analysis, performed by reducing both the number of consecutive years of surveillance considered and the proportion of isolates included in the analysis, suggested that the observed high proportion of cluster-associated cases can be ascribed to the long surveillance duration (7 years) and the high notification and typing rates of this study. Our findings show that a long temporal perspective and high surveillance intensity, intended as both exhaustiveness of the system to report cases and high WGS-typing rate, are critical for sensitive detection of possible outbreaks within a WGS-based surveillance of listeriosis. Furthermore, the power and complexity of WGS interpretation emerged from the integration of genomic and epidemiological information in the investigation of few past outbreaks within the study, indicating that the use of multiple approaches, including the analysis of the accessory genome, is needed to accurately elucidate the population dynamics of .

Keywords

References

  1. Microbiol Resour Announc. 2018 Dec 13;7(23): [PMID: 30574578]
  2. Food Microbiol. 2013 Aug;35(1):38-48 [PMID: 23628613]
  3. Genome Announc. 2018 Jun 14;6(24): [PMID: 29903806]
  4. Nat Microbiol. 2016 Oct 10;2:16185 [PMID: 27723724]
  5. J Clin Microbiol. 2015 Sep;53(9):2869-76 [PMID: 26135865]
  6. EFSA J. 2017 Dec 12;15(12):e05077 [PMID: 32625371]
  7. Appl Environ Microbiol. 2015 Nov 20;82(3):822-31 [PMID: 26590278]
  8. J Med Microbiol. 2018 Sep;67(9):1351-1360 [PMID: 30024370]
  9. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  10. BMC Genomics. 2008 Nov 13;9:539 [PMID: 19014550]
  11. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  12. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  13. PeerJ. 2014 Oct 14;2:e620 [PMID: 25332847]
  14. Euro Surveill. 2018 Aug;23(33): [PMID: 30131096]
  15. Genome Biol. 2014 Mar 03;15(3):R46 [PMID: 24580807]
  16. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  17. PLoS Curr. 2017 Jul 6;9: [PMID: 28856063]
  18. Euro Surveill. 2017 Dec;22(50): [PMID: 29258647]
  19. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  20. Front Microbiol. 2018 Jul 10;9:1482 [PMID: 30042741]
  21. Emerg Infect Dis. 2010 Nov;16(11):1678-85 [PMID: 21029524]
  22. Epidemiol Infect. 2012 Aug;140(8):1430-8 [PMID: 22093879]
  23. Bioinformatics. 2018 Sep 1;34(17):3028-3029 [PMID: 29659710]
  24. Clin Infect Dis. 2016 Aug 1;63(3):380-6 [PMID: 27090985]
  25. Methods Mol Biol. 2014;1157:73-83 [PMID: 24792549]
  26. Genome Announc. 2018 Jan 18;6(3): [PMID: 29348329]
  27. Emerg Infect Dis. 2017 Sep;23(9):1462-1470 [PMID: 28643628]
  28. Appl Environ Microbiol. 2017 Jul 17;83(15): [PMID: 28550058]
  29. Clin Microbiol Infect. 2018 Apr;24(4):350-354 [PMID: 29309930]

MeSH Term

Food Microbiology
Genome, Bacterial
Humans
Italy
Listeria monocytogenes
Listeriosis
Multilocus Sequence Typing
Whole Genome Sequencing

Word Cloud

Created with Highcharts 10.0.0casesgenomicsurveillanceisolatesproportionanalysishighpopulationEmilia-Romagnaoutbreakscluster-associatedrategenomeyearsItalyclusterspossiblemethodsusenotificationperwholesequencingWGSdetectiontypinglisteriosisincludedlongstudywithininterpretationstructurehuman20122018investigatedaimevaluatingpresenceindicativevssporadicdifferentmetricsroutine2012-2018periodconfirmedinvasive091100000yeartwiceaverageEUcountriestotal28326895%typedclusterbasedcore-genomemulti-locussequencesinglenucleotidepolymorphisms6672%belonged27lasted5higherpreviouslyestimatedEuropeanstudiesRarefactionperformedreducingnumberconsecutiveconsideredsuggestedobservedcanascribedduration7ratesfindingsshowtemporalperspectiveintensityintendedexhaustivenesssystemreportWGS-typingcriticalsensitiveWGS-basedFurthermorepowercomplexityemergedintegrationepidemiologicalinformationinvestigationpastindicatingmultipleapproachesincludingaccessoryneededaccuratelyelucidatedynamicsPopulationStructureImplicationsWholeGenomeSequencingSurveillanceListeriosisListeriamonocytogenesSNPscgMLSTepidemiologyrelatednessthresholdsurveilance

Similar Articles

Cited By