A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance.

Xuequn Chen, Chaobo Tong, Xingtan Zhang, Aixia Song, Ming Hu, Wei Dong, Fei Chen, Youping Wang, Jinxing Tu, Shengyi Liu, Haibao Tang, Liangsheng Zhang
Author Information
  1. Xuequn Chen: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  2. Chaobo Tong: The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China. ORCID
  3. Xingtan Zhang: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  4. Aixia Song: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  5. Ming Hu: The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
  6. Wei Dong: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  7. Fei Chen: College of Horticulture, Nanjing Agricultural University, Nanjing, China.
  8. Youping Wang: Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
  9. Jinxing Tu: National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, China.
  10. Shengyi Liu: The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
  11. Haibao Tang: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  12. Liangsheng Zhang: Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID

Abstract

Rapeseed (Brassica napus L.) is a recent allotetraploid crop, which is well known for its high oil production. Here, we report a high-quality genome assembly of a typical semi-winter rapeseed cultivar, 'Zhongshuang11' (hereafter 'ZS11'), using a combination of single-molecule sequencing and chromosome conformation capture (Hi-C) techniques. Most of the high-confidence sequences (93.1%) were anchored to the individual chromosomes with a total of 19 centromeres identified, matching the exact chromosome count of B. napus. The repeat sequences in the A and C subgenomes in B. napus expanded significantly from 500 000 years ago, especially over the last 100 000 years. These young and recently amplified LTR-RTs showed dispersed chromosomal distribution but significantly preferentially clustered into centromeric regions. We exhaustively annotated the nucleotide-binding leucine-rich repeat (NLR) gene repertoire, yielding a total of 597 NLR genes in B. napus genome and 17.4% of which are paired (head-to-head arrangement). Based on the resequencing data of 991 B. napus accessions, we have identified 18 759 245 single nucleotide polymorphisms (SNPs) and detected a large number of genomic regions under selective sweep among the three major ecotype groups (winter, semi-winter and spring) in B. napus. We found 49 NLR genes and five NLR gene pairs colocated in selective sweep regions with different ecotypes, suggesting a rapid diversification of NLR genes during the domestication of B. napus. The high quality of our B. napus 'ZS11' genome assembly could serve as an important resource for the study of rapeseed genomics and reveal the genetic variations associated with important agronomic traits.

Keywords

References

  1. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  2. Cell Host Microbe. 2014 Sep 10;16(3):376-90 [PMID: 25211079]
  3. Plant Biotechnol J. 2020 Apr;18(4):969-982 [PMID: 31553100]
  4. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  5. Front Plant Sci. 2017 Nov 06;8:1788 [PMID: 29163558]
  6. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  7. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  8. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  9. Genome Biol. 2014 Jun 10;15(6):R77 [PMID: 24916971]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
  12. Nat Commun. 2015 Mar 06;6:6338 [PMID: 25744164]
  13. Genome Res. 2008 Dec;18(12):1944-54 [PMID: 18832442]
  14. Plant Biotechnol J. 2019 Oct;17(10):1998-2010 [PMID: 30947395]
  15. PLoS One. 2013 Dec 26;8(12):e83052 [PMID: 24386142]
  16. Plant J. 2018 May 23;: [PMID: 29797366]
  17. Mol Plant. 2019 Jan 7;12(1):30-43 [PMID: 30472326]
  18. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  19. Plant Physiol. 2014 Feb;164(2):513-24 [PMID: 24306534]
  20. Nat Genet. 2019 Feb;51(2):224-229 [PMID: 30510239]
  21. Front Plant Sci. 2019 Jan 30;10:26 [PMID: 30761170]
  22. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  23. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  24. Bioinformatics. 2014 Dec 15;30(24):3506-14 [PMID: 25165095]
  25. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  26. New Phytol. 2019 Mar;221(4):2054-2066 [PMID: 30317650]
  27. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  28. Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18479-18487 [PMID: 31451649]
  29. Nature. 2020 Jan;577(7788):79-84 [PMID: 31853069]
  30. Trends Plant Sci. 2019 Aug;24(8):688-699 [PMID: 31266697]
  31. Plant Biotechnol J. 2017 Dec;15(12):1602-1610 [PMID: 28403535]
  32. New Phytol. 2009;182(2):470-82 [PMID: 19220763]
  33. Sci Rep. 2015 Mar 05;5:8792 [PMID: 25740259]
  34. Sci Rep. 2016 Sep 14;6:33113 [PMID: 27624881]
  35. Plant Sci. 2015 Oct;239:216-29 [PMID: 26398806]
  36. Science. 2020 Feb 14;367(6479):763-768 [PMID: 32054757]
  37. Cell. 2019 Aug 22;178(5):1260-1272.e14 [PMID: 31442410]
  38. Nat Commun. 2019 Mar 11;10(1):1154 [PMID: 30858362]
  39. Plant Cell. 2012 Dec;24(12):5177-92 [PMID: 23275581]
  40. Front Plant Sci. 2017 Feb 15;8:206 [PMID: 28261256]
  41. New Phytol. 2019 Apr;222(2):938-953 [PMID: 30585636]
  42. Nucleic Acids Res. 2005 Nov 28;33(20):6494-506 [PMID: 16314312]
  43. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  44. Plant J. 2009 Oct;60(2):218-26 [PMID: 19519800]
  45. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  46. Genome Biol. 2015 Sep 21;16:198 [PMID: 26392354]
  47. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  48. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  49. Nat Plants. 2018 May;4(5):258-268 [PMID: 29725103]
  50. Nat Genet. 2011 Aug 28;43(10):1035-9 [PMID: 21873998]
  51. Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10218-10227 [PMID: 30254172]
  52. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  53. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  54. BMC Bioinformatics. 2006 Feb 09;7:62 [PMID: 16469098]
  55. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  56. Science. 2014 Aug 22;345(6199):950-3 [PMID: 25146293]
  57. Annu Rev Plant Biol. 2014;65:505-30 [PMID: 24579996]
  58. Curr Protoc Bioinformatics. 2003 Feb;Chapter 10:Unit 10.3 [PMID: 18428693]
  59. Nat Plants. 2018 Oct;4(10):762-765 [PMID: 30287950]
  60. Genome Biol. 2015 Jan 13;16:3 [PMID: 25583564]
  61. Genetics. 2014 Jun;197(2):573-89 [PMID: 24700103]
  62. Nature. 2017 Feb 16;542(7641):307-312 [PMID: 28178233]
  63. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  64. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  65. Plant Biotechnol J. 2021 Mar;19(3):615-630 [PMID: 33073445]
  66. J Exp Bot. 2017 Oct 13;68(17):4791-4801 [PMID: 28992309]
  67. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  68. BMC Genomics. 2017 Mar 14;18(1):232 [PMID: 28292259]
  69. Nat Commun. 2014 May 23;5:3930 [PMID: 24852848]
  70. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  71. Nature. 2015 Nov 26;527(7579):508-11 [PMID: 26560029]
  72. Bioinformatics. 2016 Mar 1;32(5):767-9 [PMID: 26559507]
  73. BMC Plant Biol. 2014 Apr 29;14:114 [PMID: 24779415]
  74. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  75. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  76. Nat Genet. 2013 Dec;45(12):1431-8 [PMID: 24162736]
  77. BMC Plant Biol. 2020 Feb 13;20(1):73 [PMID: 32054439]
  78. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  79. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  80. Bioinformatics. 2009 May 15;25(10):1329-30 [PMID: 19349283]
  81. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 [PMID: 26582926]
  82. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  83. Plant J. 2017 Nov;92(3):452-468 [PMID: 28849613]

MeSH Term

Brassica napus
Brassica rapa
DNA Transposable Elements
Disease Resistance
Genome, Plant
Humans

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0napusBNLRgenomeBrassicaregionsgenesselectivesweephighhigh-qualityassemblysemi-winterrapeseed'ZS11'sequencingchromosomesequencestotalidentifiedrepeatsignificantlygeneimportantsubgenomeevolutiondiseaseresistanceRapeseedLrecentallotetraploidcropwellknownoilproductionreporttypicalcultivar'Zhongshuang11'hereafterusingcombinationsingle-moleculeconformationcaptureHi-Ctechniqueshigh-confidence931%anchoredindividualchromosomes19centromeresmatchingexactcountCsubgenomesexpanded500 000 yearsagoespeciallylast100 000 yearsyoungrecentlyamplifiedLTR-RTsshoweddispersedchromosomaldistributionpreferentiallyclusteredcentromericexhaustivelyannotatednucleotide-bindingleucine-richrepertoireyielding597174%pairedhead-to-headarrangementBasedresequencingdata991accessions18 759 245singlenucleotide polymorphisms SNPsdetectedlargenumbergenomicamongthreemajorecotypegroupswinterspringfound49fivepairscolocateddifferentecotypessuggestingrapiddiversificationdomesticationqualityserveresourcestudygenomicsrevealgeneticvariationsassociatedagronomictraitsrevealsexpansiontransposableelementslong-read

Similar Articles

Cited By