Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in .

Daniel S Saxton, Jasper Rine
Author Information
  1. Daniel S Saxton: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720. ORCID
  2. Jasper Rine: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 jrine@berkeley.edu. ORCID

Abstract

Heterochromatic domains are complex structures composed of nucleosome arrays that are bound by silencing factors. This composition raises the possibility that certain configurations of nucleosome arrays facilitate heterochromatic silencing. We tested this possibility in by systematically altering the distance between heterochromatic nucleosome-depleted regions (NDRs), which is predicted to affect local nucleosome positioning by limiting how nucleosomes can be packed between NDRs. Consistent with this prediction, serial deletions that altered the distance between heterochromatic NDRs revealed a striking oscillatory relationship between inter-NDR distance and defects in nucleosome positioning. Furthermore, conditions that caused poor nucleosome positioning also led to defects in both heterochromatin stability and the ability of cells to generate and inherit epigenetic transcriptional states. These findings strongly suggest that nucleosome positioning can contribute to formation and maintenance of functional heterochromatin and point to previously unappreciated roles of NDR positioning within heterochromatic domains.

Keywords

References

  1. Science. 2002 Sep 27;297(5590):2232-7 [PMID: 12215653]
  2. Nucleic Acids Res. 2016 Jun 2;44(10):4625-35 [PMID: 26861626]
  3. Mol Cell Biol. 1999 Dec;19(12):7944-50 [PMID: 10567520]
  4. Genes Dev. 1994 Oct 1;8(19):2257-69 [PMID: 7958893]
  5. ACS Synth Biol. 2015 Sep 18;4(9):975-86 [PMID: 25871405]
  6. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  7. Cell. 1989 Jun 2;57(5):725-37 [PMID: 2655930]
  8. Mol Cell. 2018 Feb 1;69(3):385-397.e8 [PMID: 29336876]
  9. Mol Cell Biol. 2014 Jun;34(11):2046-61 [PMID: 24662054]
  10. Mol Cell Biol. 2004 Jan;24(1):217-27 [PMID: 14673157]
  11. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  12. J Biol Chem. 2011 Apr 22;286(16):14659-69 [PMID: 21388962]
  13. Genome Res. 2010 Jan;20(1):59-67 [PMID: 19858362]
  14. Nature. 1996 Sep 5;383(6595):92-6 [PMID: 8779721]
  15. J Biol Chem. 2002 Feb 15;277(7):4778-81 [PMID: 11714726]
  16. Cell. 1984 Jul;37(3):969-78 [PMID: 6378388]
  17. Mol Cell Biol. 1998 Sep;18(9):5392-403 [PMID: 9710623]
  18. Nat Genet. 2006 Jun;38(6):700-5 [PMID: 16732288]
  19. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  20. Elife. 2015 Jan 12;4:e05007 [PMID: 25581000]
  21. Mol Biol Cell. 2002 Jul;13(7):2207-22 [PMID: 12134062]
  22. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  23. Nature. 1996 May 16;381(6579):251-3 [PMID: 8622770]
  24. Science. 2001 Aug 10;293(5532):1150-5 [PMID: 11498594]
  25. Genes Dev. 2000 Feb 15;14(4):452-63 [PMID: 10691737]
  26. EMBO Rep. 2012 Nov 6;13(11):997-1003 [PMID: 23032292]
  27. Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2822-31 [PMID: 27140647]
  28. EMBO J. 1995 Jun 1;14(11):2570-9 [PMID: 7781610]
  29. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  30. PLoS Biol. 2008 Nov 11;6(11):e277 [PMID: 18998772]
  31. Mol Cell Biol. 2004 Mar;24(5):2118-31 [PMID: 14966290]
  32. Genetics. 2014 Nov;198(3):1015-29 [PMID: 25189873]
  33. Mol Cell. 2008 Dec 26;32(6):878-87 [PMID: 19111667]
  34. Mol Cell Biol. 1988 Jan;8(1):210-25 [PMID: 3275867]
  35. Cell Rep. 2016 Sep 6;16(10):2651-2665 [PMID: 27568571]
  36. Nat Struct Mol Biol. 2018 Feb;25(2):154-162 [PMID: 29379173]
  37. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4238-41 [PMID: 279912]
  38. Mol Cell Biol. 2002 Jun;22(12):4167-80 [PMID: 12024030]
  39. Elife. 2016 Nov 11;5: [PMID: 27835568]
  40. Mol Cell Biol. 2008 Mar;28(6):1924-35 [PMID: 18195043]
  41. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  42. J Biol Chem. 2009 Jan 9;284(2):740-50 [PMID: 19017647]
  43. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  44. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  45. Elife. 2019 Oct 15;8: [PMID: 31613222]
  46. Mol Cell. 2005 Jun 10;18(6):735-48 [PMID: 15949447]
  47. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  48. Nat Rev Genet. 2010 Nov;11(11):786-99 [PMID: 20953213]
  49. Genes Dev. 1990 Apr;4(4):503-14 [PMID: 2361590]

Grants

  1. R01 GM031105/NIGMS NIH HHS
  2. R01 GM120374/NIGMS NIH HHS
  3. R37 GM031105/NIGMS NIH HHS
  4. S10 OD018174/NIH HHS

MeSH Term

Chromatin Assembly and Disassembly
Gene Expression Regulation, Fungal
Gene Silencing
Heterochromatin
Nucleosomes
Saccharomyces cerevisiae

Chemicals

Heterochromatin
Nucleosomes

Word Cloud

Created with Highcharts 10.0.0nucleosomepositioningheterochromaticsilencingdistanceNDRsdomainsarrayspossibilitycandefectsheterochromatinHeterochromaticcomplexstructurescomposedboundfactorscompositionraisescertainconfigurationsfacilitatetestedsystematicallyalteringnucleosome-depletedregionspredictedaffectlocallimitingnucleosomespackedConsistentpredictionserialdeletionsalteredrevealedstrikingoscillatoryrelationshipinter-NDRFurthermoreconditionscausedpooralsoledstabilityabilitycellsgenerateinheritepigenetictranscriptionalstatesfindingsstronglysuggestcontributeformationmaintenancefunctionalpointpreviouslyunappreciatedrolesNDRwithinNucleosomePositioningRegulatesEstablishmentStabilityInheritanceHeterochromatinchromatinepigeneticsgene

Similar Articles

Cited By