Comparison between two autorefractor performances in large scale vision screening in Chinese school age children.

Di Wang, Nan Jin, Ru-Xia Pei, Li-Qiong Zhao, Bei Du, Gui-Hua Liu, Xi-Lian Wang, Rui-Hua Wei, Xiao-Rong Li
Author Information
  1. Di Wang: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  2. Nan Jin: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  3. Ru-Xia Pei: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  4. Li-Qiong Zhao: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  5. Bei Du: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  6. Gui-Hua Liu: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  7. Xi-Lian Wang: Tianjin Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, China.
  8. Rui-Hua Wei: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
  9. Xiao-Rong Li: Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.

Abstract

AIM: To evaluate the effectiveness of Grand Seiko Ref/Keratometer WAM-5500 compared to Topcon KR800 autorefractor in detecting refractive error in large scale vision screening for Chinese school age children with the WHO criteria.
METHODS: A total of 886 participants were enrolled with mean age of 9.49±1.88y from Tianjin, China. Spherical equivalent (SE) was obtained from un-cycloplegic autorefraction and cycloplegic autorefraction. Topcon KR 800 (Topcon) and Grand Seiko WAM-5500 (WAM) autorefractors were used. Bland-Altman Plot and regression were generated to compare their performance. The overall effectiveness of detecting early stage refractive error was analyzed with receiver operating characteristic (ROC) curves.
RESULTS: The mean SE was -0.98±1.81 diopter (D) and the prevalence of myopia was 48.9% defined by WHO criteria according to the result of cycloplegic autorefraction. The mean SE of un-cycloplegic autorefraction with Topcon and WAM were -1.21±1.65 and -1.20±1.68 D respectively. There was a strong linear agreement between result obtained from WAM and cycloplegic autorefraction with an of 0.8318. Bland-Altman plot indicated a moderate agreement of cylinder values between the two methods. The sensitivity and specificity for detecting hyperopia were 90.52% and 83.51%; for detecting myopia were 95.60% and 90.24%; for detecting astigmatism were 79.40% and 90.21%; for detecting high myopia were 98.16% and 98.91% respectively.
CONCLUSION: These findings suggest that both Grand Seiko and Topcon autorefractor can be used in large-scale vision screening for detecting refractive error in Chinese population. Grand Seiko gives relatively better performance in detecting myopia, hyperopia, and high myopia for school age children.

Keywords

References

  1. Dtsch Arztebl Int. 2010 Jul;107(28-29):495-9 [PMID: 20703333]
  2. Graefes Arch Clin Exp Ophthalmol. 2005 Jul;243(7):637-45 [PMID: 15650858]
  3. J Optom. 2014 Oct-Dec;7(4):193-202 [PMID: 25130066]
  4. Int J Ophthalmol. 2013 Oct 18;6(5):618-25 [PMID: 24195036]
  5. Optom Vis Sci. 2003 Apr;80(4):320-4 [PMID: 12692490]
  6. Pediatrics. 2011 Mar;127(3):569-70 [PMID: 21282266]
  7. Eye Sci. 2015 Jun;30(2):53-5, 74 [PMID: 26902060]
  8. Eye Contact Lens. 2016 Jan;42(1):3-8 [PMID: 26513719]
  9. J Refract Surg. 2006 Nov;22(9):932-7 [PMID: 17124892]
  10. J Ophthalmic Vis Res. 2014 Oct-Dec;9(4):484-6 [PMID: 25709775]
  11. Appl Opt. 1989 Mar 15;28(6):1097-102 [PMID: 20548625]
  12. Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1594-1602 [PMID: 28291868]
  13. Optom Vis Sci. 2015 Dec;92(12):1133-9 [PMID: 26540478]
  14. Ophthalmic Physiol Opt. 2010 Mar;30(2):143-51 [PMID: 20444118]
  15. Ophthalmic Physiol Opt. 2015 Nov;35(6):622-7 [PMID: 26497294]
  16. Am J Ophthalmol. 2013 Jun;155(6):1129-1138.e1 [PMID: 23453694]
  17. J Cataract Refract Surg. 2004 Jul;30(7):1435-44 [PMID: 15210220]
  18. Graefes Arch Clin Exp Ophthalmol. 2018 May;256(5):1023-1030 [PMID: 29569083]
  19. Optom Vis Sci. 2010 Nov;87(11):873-82 [PMID: 20852450]
  20. Ophthalmic Physiol Opt. 2011 Mar;31(2):174-9 [PMID: 21309804]
  21. PLoS One. 2013 Dec 23;8(12):e82763 [PMID: 24376575]
  22. Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1348-55 [PMID: 19933197]
  23. Graefes Arch Clin Exp Ophthalmol. 2012 Oct;250(10):1477-83 [PMID: 22427241]
  24. Ophthalmology. 2011 Mar;118(3):537-42 [PMID: 20947171]
  25. J Refract Surg. 2018 Feb 1;34(2):78-83 [PMID: 29425385]
  26. BMC Ophthalmol. 2020 Jan 14;20(1):27 [PMID: 31937276]
  27. Prog Retin Eye Res. 2018 Jan;62:134-149 [PMID: 28951126]
  28. Optom Vis Sci. 1992 Apr;69(4):270-5 [PMID: 1565426]
  29. Clin Exp Optom. 2018 Jul;101(4):578-584 [PMID: 29534348]
  30. Ophthalmology. 2017 Dec;124(12):1826-1838 [PMID: 28711218]
  31. Ophthalmology. 2016 May;123(5):1036-42 [PMID: 26875007]
  32. Optom Vis Sci. 2017 Jul;94(7):751-759 [PMID: 28609418]
  33. Ophthalmic Physiol Opt. 2018 Mar;38(2):152-163 [PMID: 29315718]
  34. Ophthalmic Physiol Opt. 1994 Jul;14(3):265-77 [PMID: 7970741]
  35. Curr Eye Res. 2016;41(2):199-207 [PMID: 25803198]
  36. Am J Ophthalmol. 2017 May;177:69-76 [PMID: 28237412]
  37. Optom Vis Sci. 2017 Sep;94(9):894-902 [PMID: 28816868]
  38. Ophthalmic Epidemiol. 2014 Aug;21(4):247-55 [PMID: 24990474]
  39. Ophthalmic Physiol Opt. 2012 Jan;32(1):3-16 [PMID: 22150586]
  40. Optom Vis Sci. 2005 Dec;82(12):1066-70 [PMID: 16357649]
  41. Strabismus. 2004 Dec;12(4):261-74 [PMID: 15545144]
  42. Optom Vis Sci. 2004 Jul;81(7):554-8 [PMID: 15252356]
  43. Can J Ophthalmol. 2017 Feb;52(1):20-25 [PMID: 28237143]
  44. J Pediatr Ophthalmol Strabismus. 2018 Sep 20;55(5):306-311 [PMID: 29809264]
  45. Optom Vis Sci. 2015 Oct;92(10):1003-11 [PMID: 26258276]
  46. Invest Ophthalmol Vis Sci. 2004 Apr;45(4):1071-5 [PMID: 15037570]
  47. BMC Ophthalmol. 2018 Jun 11;18(1):140 [PMID: 29890943]
  48. Optom Vis Sci. 2017 Sep;94(9):886-893 [PMID: 28727613]

Word Cloud

Created with Highcharts 10.0.0detectingautorefractionmyopiaGrandSeikoTopconvisionscreeningageWAM-5500autorefractorrefractiveerrorChineseschoolchildrenmeanSEcycloplegicWAM90effectivenesslargescaleWHOcriteriaequivalentobtainedun-cycloplegicusedBland-AltmanperformanceDresult-1respectivelyagreementtwohyperopiahigh98AIM:evaluateRef/KeratometercomparedKR800METHODS:total886participantsenrolled949±188yTianjinChinaSphericalKR800autorefractorsPlotregressiongeneratedcompareoverallearlystageanalyzedreceiveroperatingcharacteristicROCcurvesRESULTS:-098±181diopterprevalence489%definedaccording21±16520±168stronglinear08318plotindicatedmoderatecylindervaluesmethodssensitivityspecificity52%8351%9560%24%astigmatism7940%21%16%91%CONCLUSION:findingssuggestcanlarge-scalepopulationgivesrelativelybetterComparisonperformancesspherical

Similar Articles

Cited By