Gut Microbiome in Children from Indigenous and Urban Communities in México: Different Subsistence Models, Different Microbiomes.

Andrés Sánchez-Quinto, Daniel Cerqueda-García, Luisa I Falcón, Osiris Gaona, Santiago Martínez-Correa, Javier Nieto, Isaac G-Santoyo
Author Information
  1. Andrés Sánchez-Quinto: Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, Mexico City 04510, Mexico. ORCID
  2. Daniel Cerqueda-García: Consorcio de Investigación del Golfo de México (CIGOM), Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Yucatan 97310, Mexico. ORCID
  3. Luisa I Falcón: Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, Mexico City 04510, Mexico.
  4. Osiris Gaona: Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, Mexico City 04510, Mexico. ORCID
  5. Santiago Martínez-Correa: Neuroecology Lab, Facultad de Psicología, UNAM, Mexico City 04510, Mexico.
  6. Javier Nieto: Laboratorio de Aprendizaje y Adaptación, Facultad de Psicología, UNAM, Mexico City 04510, Mexico. ORCID
  7. Isaac G-Santoyo: Neuroecology Lab, Facultad de Psicología, UNAM, Mexico City 04510, Mexico. ORCID

Abstract

The human gut microbiome is an important component that defines host health. Childhood is a particularly important period for the establishment and development of gut microbiota (GM). We sequenced the 16S rRNA gene from fecal samples of children between 5 and 10 years old, in two Mexican communities with contrasting lifestyles, i.e., "Westernized" (México City, = 13) and "non-Westernized" (Me'phaa indigenous group, = 29), in order to characterize and compare their GM. The main differences between these two communities were in bacteria associated with different types of diets (high animal protein and refined sugars vs. high fiber food, respectively). In addition, the GM of Me'phaa children showed higher total diversity and the presence of exclusive phyla, such as Deinococcus-Thermus, Chloroflexi, Elusimicrobia, Acidobacteria, and Fibrobacteres. In contrast, the children from México City showed less diversity and the presence of Saccharibacteria phylum, which was associated with the degradation of sugar compounds and was not present in the samples from Me'phaa children. This comparison provided further knowledge of the selective pressures affecting microbial ecosystemic composition over the course of human evolution and the potential consequences of pathophysiological states correlated with Westernization lifestyles.

Keywords

References

  1. Front Immunol. 2019 Sep 13;10:2184 [PMID: 31572391]
  2. ISME J. 2012 Oct;6(10):1848-57 [PMID: 22495068]
  3. PLoS One. 2014 Apr 24;9(4):e95547 [PMID: 24763225]
  4. Nat Commun. 2014 Apr 15;5:3654 [PMID: 24736369]
  5. Front Microbiol. 2018 Aug 28;9:1993 [PMID: 30210471]
  6. Methods Mol Biol. 2009;537:39-64 [PMID: 19378139]
  7. Environ Microbiol. 2017 Jan;19(1):95-105 [PMID: 27450202]
  8. Microbiome. 2015 Aug 26;3:36 [PMID: 26306392]
  9. FEMS Microbiol Ecol. 2011 Aug;77(2):404-12 [PMID: 21539582]
  10. PLoS Biol. 2018 Nov 15;16(11):e2005396 [PMID: 30439937]
  11. Sci Rep. 2020 Feb 28;10(1):3680 [PMID: 32111922]
  12. Cell Host Microbe. 2018 Jan 10;23(1):10-13 [PMID: 29324224]
  13. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  14. Lancet. 2003 Feb 8;361(9356):512-9 [PMID: 12583961]
  15. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  16. New Microbes New Infect. 2018 Nov 02;27:14-21 [PMID: 30555706]
  17. Nat Rev Microbiol. 2013 Apr;11(4):227-38 [PMID: 23435359]
  18. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  19. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  20. PLoS Biol. 2007 Jul;5(7):e177 [PMID: 17594176]
  21. Cell Rep. 2016 Mar 8;14(9):2142-2153 [PMID: 26923597]
  22. Front Microbiol. 2018 Oct 16;9:2494 [PMID: 30386323]
  23. PLoS One. 2012;7(6):e28742 [PMID: 22719820]
  24. Front Microbiol. 2016 Jan 07;6:1469 [PMID: 26779135]
  25. Clin Gastroenterol Hepatol. 2019 Jan;17(2):218-230 [PMID: 30240894]
  26. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  27. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  28. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  29. Cell Rep. 2018 Jun 5;23(10):3056-3067 [PMID: 29874590]
  30. Trends Microbiol. 2016 May;24(5):402-413 [PMID: 26996765]
  31. PLoS One. 2015 Jun 03;10(6):e0127499 [PMID: 26039074]
  32. Immunology. 2012 Jan;135(1):1-8 [PMID: 22044254]
  33. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  34. Sci Adv. 2015 Apr 3;1(3): [PMID: 26229982]
  35. PLoS One. 2012;7(7):e40503 [PMID: 22848382]
  36. Gut Microbes. 2020 Jul 3;11(4):900-917 [PMID: 31973685]
  37. Gut Pathog. 2013 Apr 30;5(1):10 [PMID: 23631345]
  38. Nutr Rev. 2012 Aug;70 Suppl 1:S38-44 [PMID: 22861806]
  39. ISME J. 2013 Feb;7(2):269-80 [PMID: 23038174]
  40. Cell Host Microbe. 2016 Jan 13;19(1):12-20 [PMID: 26764593]
  41. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 [PMID: 20679230]
  42. Microb Ecol Health Dis. 2015 Feb 02;26:26050 [PMID: 25651996]
  43. Science. 2017 Aug 25;357(6353):802-806 [PMID: 28839072]
  44. Front Immunol. 2019 Oct 25;10:2441 [PMID: 31749793]
  45. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  46. Trends Mol Med. 2014 Sep;20(9):509-18 [PMID: 24956966]
  47. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 [PMID: 20668239]
  48. Front Microbiol. 2017 Aug 02;8:1458 [PMID: 28824586]
  49. Rambam Maimonides Med J. 2019 Jan 28;10(1): [PMID: 30720424]
  50. BMC Biol. 2019 Oct 28;17(1):83 [PMID: 31660948]
  51. Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):515-20 [PMID: 26154278]
  52. Nat Rev Microbiol. 2013 Jul;11(7):497-504 [PMID: 23748339]
  53. Curr Mol Med. 2008 Jun;8(4):274-81 [PMID: 18537635]
  54. Pediatr Obes. 2019 Apr;14(4):e12480 [PMID: 30417607]
  55. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  56. Cell Rep. 2015 Apr 28;11(4):527-38 [PMID: 25892234]
  57. Curr Biol. 2015 Jul 20;25(14):R611-3 [PMID: 26196489]
  58. Sci Transl Med. 2009 Nov 11;1(6):6ra14 [PMID: 20368178]
  59. Nature. 2011 May 12;473(7346):174-80 [PMID: 21508958]
  60. FEMS Microbiol Ecol. 2016 Jun;92(6):fiw078 [PMID: 27090759]
  61. APMIS. 2013 Nov;121(11):1082-90 [PMID: 23594317]
  62. Nat Rev Microbiol. 2019 Jun;17(6):383-390 [PMID: 31089293]
  63. Science. 2019 Oct 25;366(6464): [PMID: 31649168]
  64. FEMS Microbiol Rev. 2017 Jul 1;41(4):453-478 [PMID: 28333226]
  65. Science. 2016 Apr 29;352(6285):560-4 [PMID: 27126039]
  66. Anaerobe. 2016 Jun;39:68-76 [PMID: 26946360]
  67. Child Obes. 2018 Nov/Dec;14(8):501-509 [PMID: 30183336]

Grants

  1. 241744, IA209416, IA207019/UNAM-PAPIIT, CONACYT Ciencia Básica, Instituto de Ecología-UNAM

Word Cloud

Created with Highcharts 10.0.0childrenhumanGMMe'phaadiversitygutmicrobiomeimportanthealthmicrobiotasamplestwocommunitieslifestylesMéxicoCity=associatedhighshowedpresencemicrobialDifferentcomponentdefineshostChildhoodparticularlyperiodestablishmentdevelopmentsequenced16SrRNAgenefecal510yearsoldMexicancontrastingie"Westernized"13"non-Westernized"indigenousgroup29ordercharacterizecomparemaindifferencesbacteriadifferenttypesdietsanimalproteinrefinedsugarsvsfiberfoodrespectivelyadditionhighertotalexclusivephylaDeinococcus-ThermusChloroflexiElusimicrobiaAcidobacteriaFibrobacterescontrastlessSaccharibacteriaphylumdegradationsugarcompoundspresentcomparisonprovidedknowledgeselectivepressuresaffectingecosystemiccompositioncourseevolutionpotentialconsequencespathophysiologicalstatescorrelatedWesternizationGutMicrobiomeChildrenIndigenousUrbanCommunitiesMéxico:SubsistenceModelsMicrobiomesWesternizedchildren’sdietintestinallifestylenon-Westernized

Similar Articles

Cited By