Synthetic gene-regulatory networks in the opportunistic human pathogen .

Robin A Sorg, Clement Gallay, Laurye Van Maele, Jean-Claude Sirard, Jan-Willem Veening
Author Information
  1. Robin A Sorg: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, 9747 AG, Groningen, The Netherlands.
  2. Clement Gallay: Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland. ORCID
  3. Laurye Van Maele: Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
  4. Jean-Claude Sirard: Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France. ORCID
  5. Jan-Willem Veening: Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; jan-willem.veening@unil.ch. ORCID

Abstract

can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of .

Keywords

References

  1. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):14024-9 [PMID: 23924614]
  2. Nat Rev Microbiol. 2008 Apr;6(4):288-301 [PMID: 18340341]
  3. PLoS Biol. 2014 Aug 19;12(8):e1001928 [PMID: 25136970]
  4. J Mol Biol. 2005 Jun 17;349(4):716-30 [PMID: 15893770]
  5. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1891-8 [PMID: 16591435]
  6. PLoS One. 2014 Jun 24;9(6):e100510 [PMID: 24959661]
  7. Nat Methods. 2013 Apr;10(4):347-53 [PMID: 23474467]
  8. Nucleic Acids Res. 2014 Oct;42(18):11321-8 [PMID: 25245949]
  9. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9761-6 [PMID: 9707549]
  10. Nat Commun. 2014 Sep 30;5:5055 [PMID: 25268848]
  11. Mol Microbiol. 2002 Jul;45(2):411-21 [PMID: 12123453]
  12. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  13. Nature. 2005 Nov 24;438(7067):443-8 [PMID: 16306982]
  14. Nucleic Acids Res. 2018 Nov 2;46(19):9990-10006 [PMID: 30165663]
  15. Mol Microbiol. 2000 Nov;38(4):867-78 [PMID: 11115120]
  16. Lancet. 2013 Apr 20;381(9875):1405-1416 [PMID: 23582727]
  17. ACS Synth Biol. 2015 Mar 20;4(3):228-39 [PMID: 24845455]
  18. Mol Microbiol. 2018 Sep;109(5):663-675 [PMID: 29995987]
  19. Gene. 1994 Dec 30;151(1-2):131-5 [PMID: 7828861]
  20. PLoS Genet. 2006 Nov 10;2(11):e185 [PMID: 17096598]
  21. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  22. J Bacteriol. 2000 Nov;182(21):6192-202 [PMID: 11029442]
  23. PLoS Pathog. 2012;8(7):e1002788 [PMID: 22807675]
  24. Front Immunol. 2019 Apr 09;10:723 [PMID: 31024555]
  25. Nucleic Acids Res. 2018 Nov 2;46(19):9971-9989 [PMID: 30107613]
  26. Cell. 2014 Apr 10;157(2):395-406 [PMID: 24725406]
  27. Nucleic Acids Res. 1990 May 25;18(10):2875-80 [PMID: 2161514]
  28. Cell Host Microbe. 2021 Jan 13;29(1):107-120.e6 [PMID: 33120116]
  29. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  30. J Biol Chem. 2006 Sep 1;281(35):25097-109 [PMID: 16787930]
  31. Nat Rev Microbiol. 2014 Apr;12(4):252-62 [PMID: 24590244]
  32. Microbiology (Reading). 2006 Feb;152(Pt 2):351-359 [PMID: 16436423]
  33. Mol Syst Biol. 2017 May 10;13(5):931 [PMID: 28490437]
  34. Science. 1996 Mar 1;271(5253):1247-54 [PMID: 8638105]
  35. Mol Microbiol. 2009 Oct;74(2):395-408 [PMID: 19737355]
  36. Nat Rev Microbiol. 2018 Jun;16(6):355-367 [PMID: 29599457]
  37. J Infect Dis. 2012 Sep 1;206(5):723-34 [PMID: 22723642]
  38. Cell Rep. 2018 Nov 27;25(9):2390-2400.e3 [PMID: 30485808]
  39. J Vis Exp. 2011 Jul 28;(53): [PMID: 21841760]
  40. Mol Gen Genet. 1983;191(1):138-44 [PMID: 6412036]
  41. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51 [PMID: 1319065]
  42. Appl Environ Microbiol. 2001 Nov;67(11):5190-6 [PMID: 11679344]
  43. Microbiology (Reading). 2006 Feb;152(Pt 2):343-349 [PMID: 16436422]
  44. Nat Methods. 2014 May;11(5):508-20 [PMID: 24781324]
  45. Gene. 1994 Jan 28;138(1-2):109-14 [PMID: 8125286]
  46. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  47. Nat Methods. 2013 Apr;10(4):354-60 [PMID: 23474465]
  48. Cell. 2009 Oct 30;139(3):512-22 [PMID: 19853288]
  49. Infect Immun. 1998 Sep;66(9):4011-7 [PMID: 9712740]
  50. J Mol Biol. 1996 Mar 22;257(1):21-9 [PMID: 8632456]
  51. J Med Microbiol. 2006 Apr;55(Pt 4):355-363 [PMID: 16533981]
  52. J Exp Med. 1944 Feb 1;79(2):137-58 [PMID: 19871359]
  53. Nucleic Acids Res. 2016 Jun 2;44(10):e95 [PMID: 26932362]
  54. Nat Methods. 2009 Oct;6(10):767-72 [PMID: 19767758]
  55. J Biol Eng. 2010 Jan 20;4(1):1 [PMID: 20205762]
  56. Lancet. 2015 Sep 12;386(9998):1097-108 [PMID: 26277247]
  57. Sci Prog. 2015;98(Pt 3):244-52 [PMID: 26601339]
  58. Arch Microbiol. 2006 Dec;186(6):465-73 [PMID: 16932907]
  59. Mol Syst Biol. 2007;3:145 [PMID: 18004278]
  60. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3581-4 [PMID: 4587255]
  61. Nucleic Acids Res. 1997 Mar 15;25(6):1203-10 [PMID: 9092630]
  62. J Bacteriol. 2003 Mar;185(6):2051-8 [PMID: 12618474]
  63. Gene. 1999 Jan 21;226(2):243-51 [PMID: 9931496]
  64. Appl Environ Microbiol. 2015 Oct;81(20):7244-52 [PMID: 26253684]
  65. Rep Prog Phys. 2013 Sep;76(9):096602 [PMID: 24006369]
  66. Mol Cell. 2016 Jul 21;63(2):329-336 [PMID: 27425413]

MeSH Term

Animals
Bacterial Proteins
Disease Models, Animal
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genes, Synthetic
Humans
Influenza A virus
Male
Mice
Nasopharynx
Operon
Opportunistic Infections
Pneumonia, Pneumococcal
Pneumonia, Viral
Promoter Regions, Genetic
Streptococcus pneumoniae
Superinfection
Synthetic Biology
Transcription Factors
Virulence Factors

Chemicals

Bacterial Proteins
Transcription Factors
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0expressioncontrolvirulencesyntheticgenenetworkscanhumanenvironmentsfactorbiologydescribedregulatorypromotersgatesIMPLYdemonstratetogglepneumococcalgategene-regulatorysuperinfectioncausediseasevarioustissuesorgansincludingearbrainbloodlungthushighlydiversedynamicchallengingstudypneumococcicuesnaturalpresenceimmunesystemdifficultsimulatevitroapplymethodsreverse-engineerselectionplatformallowsstraightforwardidentificationtranscriptionalelementscombinatoriallibrariespresentTetR-LacI-regulatedshowrangesfourordersmagnitudeBasedhighercomplexityassembledlogicANDsingle-copygenome-integratedswitchesgiverisebimodalpopulationdistributionstoolsusedmimiccomplexpatternsonesfoundfactorsIndeedablerewirecapsuleoperonmainexternallyinducibleYESactexpressedabsenceinducerImportantlyfunctionalinfluenzavirusmurinemodelpneumoniapavingwayvivoinvestigationsimportancepathogenicitySyntheticopportunisticpathogenPneumococcuscounterselectionswitch

Similar Articles

Cited By