Growth cone repulsion to Netrin-1 depends on lipid raft microdomains enriched in UNC5 receptors.

Marc Hernaiz-Llorens, Cristina Roselló-Busquets, Nela Durisic, Adam Filip, Fausto Ulloa, Ramón Martínez-Mármol, Eduardo Soriano
Author Information
  1. Marc Hernaiz-Llorens: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain. ORCID
  2. Cristina Roselló-Busquets: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
  3. Nela Durisic: Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia.
  4. Adam Filip: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
  5. Fausto Ulloa: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
  6. Ramón Martínez-Mármol: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain. r.martinezmarmol@uq.edu.au. ORCID
  7. Eduardo Soriano: Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain. esoriano@ub.edu.

Abstract

During brain development, Uncoordinated locomotion 5 (UNC5) receptors control axonal extension through their sensing of the guidance molecule Netrin-1. The correct positioning of receptors into cholesterol-enriched membrane raft microdomains is crucial for the efficient transduction of the recognized signals. However, whether such microdomains are required for the appropriate axonal guidance mediated by UNC5 receptors remains unknown. Here, we combine the use of confocal microscopy, live-cell FRAP analysis and single-particle tracking PALM to characterize the distribution of UNC5 receptors into raft microdomains, revealing differences in their membrane mobility properties. Using pharmacological and genetic approaches in primary neuronal cultures and brain cerebellar explants we further demonstrate that disrupting raft microdomains inhibits the chemorepulsive response of growth cones and axons against Netrin-1. Together, our findings indicate that the distribution of all UNC5 receptors into cholesterol-enriched raft microdomains is heterogeneous and that the specific localization has functional consequences for the axonal chemorepulsion against Netrin-1.

Keywords

References

  1. Biochemistry. 1999 Jun 22;38(25):8056-63 [PMID: 10387050]
  2. Biochim Biophys Acta. 2014 Feb;1838(2):532-45 [PMID: 23899502]
  3. Cell Rep. 2018 Jan 9;22(2):427-440 [PMID: 29320738]
  4. Biochim Biophys Acta. 2007 Jun;1768(6):1311-24 [PMID: 17493580]
  5. J Neurosci. 2013 Aug 7;33(32):13204-24 [PMID: 23926273]
  6. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7238-43 [PMID: 10377398]
  7. Mol Biol Cell. 2008 May;19(5):2101-12 [PMID: 18287532]
  8. Mol Cell. 2009 Mar 27;33(6):692-703 [PMID: 19328064]
  9. Phys Chem Chem Phys. 2013 Jan 21;15(3):845-9 [PMID: 23202416]
  10. Methods Enzymol. 2010;475:109-20 [PMID: 20627155]
  11. Development. 1998 Jan;125(1):41-50 [PMID: 9389662]
  12. Brain. 2015 Aug;138(Pt 8):2383-98 [PMID: 26141492]
  13. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  14. J Neurosci. 2014 Jun 25;34(26):8659-61 [PMID: 24966366]
  15. J Neurosci. 2008 Jan 30;28(5):1099-108 [PMID: 18234888]
  16. Cell Rep. 2014 Aug 21;8(4):1146-59 [PMID: 25127134]
  17. J Neurosci. 2011 Oct 12;31(41):14463-80 [PMID: 21994363]
  18. Neuron. 1999 Nov;24(3):607-22 [PMID: 10595513]
  19. Cell. 2008 Jun 27;133(7):1241-54 [PMID: 18585357]
  20. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14465-70 [PMID: 18796601]
  21. FEBS Lett. 1995 Sep 11;371(3):321-3 [PMID: 7556620]
  22. J Comp Neurol. 2003 Jun 30;461(3):394-413 [PMID: 12746876]
  23. Clin Chem. 1973 Dec;19(12):1350-6 [PMID: 4757363]
  24. Neuron. 2004 Apr 8;42(1):51-62 [PMID: 15066264]
  25. Nat Commun. 2017 Oct 31;8(1):1219 [PMID: 29089556]
  26. J Biol Chem. 2012 Aug 3;287(32):27126-38 [PMID: 22685302]
  27. Science. 2009 Oct 9;326(5950):298-301 [PMID: 19815778]
  28. Cell. 1994 Aug 12;78(3):409-24 [PMID: 8062384]
  29. Exp Cell Res. 2008 Aug 15;314(14):2544-52 [PMID: 18582460]
  30. J Neurosci. 2006 Aug 23;26(34):8866-74 [PMID: 16928876]
  31. Cell. 1999 Jun 25;97(7):927-41 [PMID: 10399920]
  32. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130-4 [PMID: 7991596]
  33. J Biol Chem. 2003 Aug 29;278(35):32561-8 [PMID: 12810718]
  34. Neuron. 2001 Nov 20;32(4):605-17 [PMID: 11719202]
  35. Biophys J. 1991 Oct;60(4):910-21 [PMID: 1742458]
  36. Dis Model Mech. 2011 Jan;4(1):104-19 [PMID: 20959636]
  37. Nat Methods. 2008 Feb;5(2):155-7 [PMID: 18193054]
  38. Front Cell Neurosci. 2019 Feb 12;13:40 [PMID: 30809129]
  39. Prog Biophys Mol Biol. 2015 Sep;118(3):153-60 [PMID: 25881791]
  40. Essays Biochem. 2015;57:135-45 [PMID: 25658350]
  41. J Biol Chem. 2003 Jun 20;278(25):22980-8 [PMID: 12686551]
  42. Nat Protoc. 2012 Jan 19;7(2):268-80 [PMID: 22262008]
  43. FASEB J. 2002 Jun;16(8):869-71 [PMID: 11967234]
  44. Neuron. 1997 Dec;19(6):1211-24 [PMID: 9427245]
  45. Mech Dev. 2002 Oct;118(1-2):191-7 [PMID: 12351186]
  46. Nat Cell Biol. 2004 Aug;6(8):756-62 [PMID: 15258590]
  47. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  48. Development. 2000 Apr;127(7):1359-72 [PMID: 10704383]
  49. J Cell Sci. 2005 Apr 15;118(Pt 8):1687-92 [PMID: 15811950]
  50. Nat Methods. 2008 Aug;5(8):695-702 [PMID: 18641657]
  51. Biophys J. 2018 Mar 13;114(5):1018-1025 [PMID: 29539390]
  52. Traffic. 2019 Nov;20(11):867-880 [PMID: 31452286]

Grants

  1. BES-2014-067857/Ministerio de Economía, Industria y Competitividad, Gobierno de España
  2. FPU14/02156/Ministerio de Economía, Industria y Competitividad, Gobierno de España
  3. SAF2016-76340R/Ministerio de Economía, Industria y Competitividad, Gobierno de España
  4. 1147600/National Health and Medical Research Council

MeSH Term

Animals
Axons
Cells, Cultured
Cholesterol
Cholesterol 24-Hydroxylase
Female
Fluorescence Recovery After Photobleaching
HEK293 Cells
Humans
Membrane Microdomains
Mice
Netrin Receptors
Netrin-1
Neurons
Receptors, Cell Surface

Chemicals

Netrin Receptors
Receptors, Cell Surface
UNC5A protein, human
UNC5B protein, human
UNC5C protein, human
UNC5D protein, human
Netrin-1
Cholesterol
Cholesterol 24-Hydroxylase

Word Cloud

Created with Highcharts 10.0.0UNC5receptorsraftmicrodomainsNetrin-1axonalbrainguidancecholesterol-enrichedmembranetrackingdistributionrepulsiondevelopmentUncoordinatedlocomotion5controlextensionsensingmoleculecorrectpositioningcrucialefficienttransductionrecognizedsignalsHoweverwhetherrequiredappropriatemediatedremainsunknowncombineuseconfocalmicroscopylive-cellFRAPanalysissingle-particlePALMcharacterizerevealingdifferencesmobilitypropertiesUsingpharmacologicalgeneticapproachesprimaryneuronalculturescerebellarexplantsdemonstratedisruptinginhibitschemorepulsiveresponsegrowthconesaxonsTogetherfindingsindicateheterogeneousspecificlocalizationfunctionalconsequenceschemorepulsionGrowthconedependslipidenrichedAxonalCerebellarEGLneuronsLipidmicrodomainSingleparticle

Similar Articles

Cited By