Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics.

Salem S Salem, Ehab F El-Belely, Gniewko Niedbała, Maryam M Alnoman, Saad El-Din Hassan, Ahmed Mohamed Eid, Tharwat I Shaheen, Amr Elkelish, Amr Fouda
Author Information
  1. Salem S Salem: Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ORCID
  2. Ehab F El-Belely: Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ORCID
  3. Gniewko Niedbała: Department of Biosystems Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland. ORCID
  4. Maryam M Alnoman: Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr 46429, Saudi Arabia.
  5. Saad El-Din Hassan: Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ORCID
  6. Ahmed Mohamed Eid: Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ORCID
  7. Tharwat I Shaheen: National Research Centre, El-Behouth St., Dokki, Giza 12622, Egypt.
  8. Amr Elkelish: Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt. ORCID
  9. Amr Fouda: Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ORCID

Abstract

An endophytic strain of L-1 was isolated from healthy medicinal plant leaves of L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV-vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13-40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (-19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25-100 ppm) against the pathogens and with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.

Keywords

References

  1. Theranostics. 2014 Jan 29;4(3):316-35 [PMID: 24505239]
  2. Heliyon. 2020 May 15;6(5):e03943 [PMID: 32518846]
  3. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  4. ACS Omega. 2019 May 22;4(5):8985-9000 [PMID: 31459987]
  5. World J Microbiol Biotechnol. 2018 Jan 05;34(2):23 [PMID: 29305718]
  6. Biol Trace Elem Res. 2020 Jun;195(2):707-724 [PMID: 31486967]
  7. Int J Mol Sci. 2019 Dec 03;20(23): [PMID: 31816851]
  8. Biol Trace Elem Res. 2020 Sep 8;: [PMID: 32895893]
  9. Biol Trace Elem Res. 2020 May 6;: [PMID: 32377944]
  10. J Biol Chem. 2003 Apr 18;278(16):14487-97 [PMID: 12473670]
  11. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  12. Nanomaterials (Basel). 2018 May 10;8(5): [PMID: 29748469]
  13. Biol Trace Elem Res. 2020 May 25;: [PMID: 32451695]
  14. J Biol Inorg Chem. 2019 May;24(3):377-393 [PMID: 30915551]
  15. Int J Mol Sci. 2019 Jan 21;20(2): [PMID: 30669621]
  16. Carbohydr Polym. 2020 Feb 15;230:115711 [PMID: 31887890]
  17. Adv Colloid Interface Sci. 2020 Oct;284:102246 [PMID: 32977142]
  18. Microorganisms. 2020 Jan 17;8(1): [PMID: 31963508]
  19. J Photochem Photobiol B. 2019 Aug;197:111529 [PMID: 31220803]
  20. Heliyon. 2020 Sep 23;6(9):e04896 [PMID: 32995606]
  21. Sci Rep. 2019 Sep 10;9(1):13071 [PMID: 31506473]
  22. Heliyon. 2020 Aug 19;6(8):e04594 [PMID: 32885066]
  23. J Genet Eng Biotechnol. 2019 Nov 1;17(1):8 [PMID: 31673864]
  24. Antibiotics (Basel). 2020 Sep 24;9(10): [PMID: 32987922]
  25. Molecules. 2019 Oct 29;24(21): [PMID: 31671819]
  26. J Appl Microbiol. 2016 May;120(5):1250-63 [PMID: 26864807]
  27. Lett Appl Microbiol. 2017 Jun;64(6):401-408 [PMID: 28267874]
  28. Antimicrob Agents Chemother. 2010 Oct;54(10):4208-18 [PMID: 20660682]
  29. J Genet Eng Biotechnol. 2017 Jun;15(1):31-39 [PMID: 30647639]
  30. Microb Pathog. 2018 Dec;125:252-261 [PMID: 30240818]
  31. Bioinorg Chem Appl. 2019 Jul 1;2019:4649506 [PMID: 31354799]
  32. Bioprocess Biosyst Eng. 2014 Feb;37(2):261-7 [PMID: 23771163]
  33. Ecotoxicol Environ Saf. 2019 Jan 30;168:260-278 [PMID: 30388544]
  34. Appl Microbiol Biotechnol. 2008 Sep;80(4):685-95 [PMID: 18679673]
  35. Cancers (Basel). 2020 Apr 01;12(4): [PMID: 32244822]
  36. Molecules. 2018 Dec 06;23(12): [PMID: 30563220]
  37. Sci Rep. 2018 Feb 28;8(1):3820 [PMID: 29491452]
  38. Biotechnol Lett. 2019 Sep;41(8-9):899-914 [PMID: 31201601]
  39. Materials (Basel). 2017 May 16;10(5): [PMID: 28772896]
  40. J Microbiol Immunol Infect. 2018 Feb;51(1):45-54 [PMID: 27103501]
  41. Sci Total Environ. 2020 Jun 1;719:137396 [PMID: 32143096]
  42. Biomed Res Int. 2013;2013:287638 [PMID: 23936787]
  43. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  44. PLoS One. 2019 Sep 13;14(9):e0222322 [PMID: 31518380]

Word Cloud

Created with Highcharts 10.0.0Ag-NPsfabricsnmantibacterialppm±0endophyticgreensynthesisspectroscopyFT-IRelectronmicroscopyTEMX-rayXRDanalysesanalysisstabilitysurface2green-synthesizedexhibitedactivity57concentrationcytotoxicitycottonnano-finishedstrainL-1isolatedhealthymedicinalplantleavesLusedsilvernanoparticlesusesecretedenzymesproteinsUV-visFourier-transforminfraredtransmissiondiffractiondynamiclightscatteringDLScarriedresultsdemonstratedsuccessfulbiosynthesiscrystallinesphericalparticlesize13-40assesseddetectingPlasmonresonanceSPR415onemonthmeasuringNPscharge-19mVzetapotentialζbroad-spectrumdifferentconcentrations625-100pathogensclearinhibitionzoneranging94211mmFurthermoredisplayedhighefficacyCaco-2cancerouscelllinehalfmaximalinhibitoryIC=respectin-vitro100selectedsafedoseloadingontoscanningconnectedenergy-dispersiveSEM-EDXshoweddistribution2%totalfabricelementsMoreoverpathogenicGram-positiveGram-negativebacteriaeven10washingcyclesindicatingtreatedBactericidalIn-VitroCytotoxicEfficacySilverNanoparticlesFabricatedEndophyticActinomycetesUseCoatingTextileFabricsactivitiesactinomycetesstreptomycesspp

Similar Articles

Cited By