Termites Are Associated with External Species-Specific Bacterial Communities.

Patrik Soukup, Tomáš Větrovský, Petr Stiblik, Kateřina Votýpková, Amrita Chakraborty, David Sillam-Dussès, Miroslav Kolařík, Iñaki Odriozola, Nathan Lo, Petr Baldrian, Jan Šobotník, Thomas Bourguignon
Author Information
  1. Patrik Soukup: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic. ORCID
  2. Tomáš Větrovský: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
  3. Petr Stiblik: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic. ORCID
  4. Kateřina Votýpková: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
  5. Amrita Chakraborty: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
  6. David Sillam-Dussès: University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR 4443, Villetaneuse, France.
  7. Miroslav Kolařík: Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
  8. Iñaki Odriozola: Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic. ORCID
  9. Nathan Lo: School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia. ORCID
  10. Petr Baldrian: Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic. ORCID
  11. Jan Šobotník: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic sobotnik@ftz.czu.cz thomas.bourguignon@oist.jp.
  12. Thomas Bourguignon: Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic sobotnik@ftz.czu.cz thomas.bourguignon@oist.jp. ORCID

Abstract

All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to and , which were often shared by several termite species. The abundance of several bacterial OTUs, such as , , , and , was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities. As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on and abundance and negative effects on the abundance of several ubiquitous genera, such as , , , and Our results demonstrate that termite galleries harbor unique bacterial communities.

Keywords

References

  1. Microb Ecol. 2004 Aug;48(2):191-9 [PMID: 15546039]
  2. Oecologia. 2001 Oct;129(2):271-280 [PMID: 28547606]
  3. Nucleic Acids Res. 2015 Jan;43(Database issue):D593-8 [PMID: 25414355]
  4. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  5. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  6. Naturwissenschaften. 2013 Nov;100(11):1051-9 [PMID: 24271031]
  7. Environ Entomol. 2018 Dec 7;47(6):1431-1439 [PMID: 30321327]
  8. Insect Mol Biol. 2010 Oct;19(5):669-74 [PMID: 20561089]
  9. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  10. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12652-7 [PMID: 19506247]
  11. Cell Mol Life Sci. 2011 Apr;68(8):1311-25 [PMID: 21365277]
  12. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  13. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  14. Bioinformatics. 2018 Jul 1;34(13):2292-2294 [PMID: 29452334]
  15. PLoS One. 2013;8(2):e57923 [PMID: 23460914]
  16. Appl Environ Microbiol. 2012 Jul;78(13):4691-701 [PMID: 22544239]
  17. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  18. Insect Mol Biol. 2018 Oct;27(5):564-576 [PMID: 29663551]
  19. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  20. Science. 2008 Nov 14;322(5904):1108-9 [PMID: 19008447]
  21. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  22. Curr Biol. 2018 Feb 19;28(4):649-654.e2 [PMID: 29429621]
  23. Mol Ecol. 2012 Oct;21(20):5124-37 [PMID: 22978555]
  24. Environ Microbiol. 2010 Aug;12(8):2120-32 [PMID: 21966907]
  25. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  26. Syst Appl Microbiol. 2015 Oct;38(7):472-82 [PMID: 26283320]
  27. Curr Microbiol. 2016 Mar;72(3):267-75 [PMID: 26613615]
  28. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  29. Microb Ecol. 2012 May;63(4):975-85 [PMID: 22173371]
  30. Proc Biol Sci. 2013 Sep 18;280(1770):20131885 [PMID: 24048157]
  31. Zoolog Sci. 2005 Aug;22(8):917-22 [PMID: 16141705]
  32. Mol Ecol. 2011 Jun;20(12):2619-27 [PMID: 21481052]
  33. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  34. Oecologia. 2019 Nov;191(3):541-553 [PMID: 31571038]
  35. Microbiol Rev. 1995 Mar;59(1):124-42 [PMID: 7708010]
  36. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  37. Appl Environ Microbiol. 2007 Aug;73(16):5199-208 [PMID: 17574999]
  38. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  39. Biol Rev Camb Philos Soc. 2016 Feb;91(1):70-85 [PMID: 25424353]

MeSH Term

Animals
Bacteria
Biodiversity
Isoptera
Microbiota
RNA, Ribosomal, 16S
Species Specificity

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0termitebacterialcommunitiesgalleriesspeciestermitesactivitiesseveralabundanceassociationsmicrobesgutsassociatedstudiedthreewood-feedingfoundTermiteOTUsresultsdemonstrateharboruniqueeffectsestablishedwiderangesymbioticalsogrownestsprevalenceremainslargelyunknownusing16SrRNAgeneampliconsequencingcompositionsamongbodiescontrolwoodfragmentsdevoiddifferspecies-specificmannerenrichedoperationaltaxonomicunitsbelongingoftensharedreducedcaseecosystemengineersimpacthabitatpotentiallyaffectinginfluencecompositionsurroundingenvironmentpositivenegativeubiquitousgeneraTermitesAssociatedExternalSpecies-SpecificBacterialCommunitiesCoptotermesHeterotermesNasutitermesectosymbiontssymbiosis

Similar Articles

Cited By