High sensitivity of tropical precipitation to local sea surface temperature.

Peter Good, Robin Chadwick, Christopher E Holloway, John Kennedy, Jason A Lowe, Romain Roehrig, Stephanie S Rushley
Author Information
  1. Peter Good: MetOffice Hadley Centre, Exeter, UK. peter.good@metoffice.gov.uk. ORCID
  2. Robin Chadwick: MetOffice Hadley Centre, Exeter, UK. ORCID
  3. Christopher E Holloway: Department of Meteorology, University of Reading, Reading, UK. ORCID
  4. John Kennedy: MetOffice Hadley Centre, Exeter, UK. ORCID
  5. Jason A Lowe: MetOffice Hadley Centre, Exeter, UK.
  6. Romain Roehrig: CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France. ORCID
  7. Stephanie S Rushley: Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA. ORCID

Abstract

Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations and limited observations of shallow circulations further obstruct our understanding of the ocean's influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations, including excessively wide tropical rainbands, the 'double-intertropical convergence zone problem' and too-weak responses to ENSO. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.

References

  1. Philander, S. G. H. El-Nino Southern Oscillation phenomena. Nature 302, 295–301 (1983). [DOI: 10.1038/302295a0]
  2. Pierrehumbert, R. T. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52, 1784–1806 (1995). [DOI: 10.1175/1520-0469(1995)052<1784]
  3. Tian, B. J. Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias. Geophys. Res. Lett. 42, 4133–4141 (2015). [DOI: 10.1002/2015GL064119]
  4. Back, L. E. & Bretherton, C. S. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett. 33, L17810 (2006). [DOI: 10.1029/2006GL026672]
  5. Sherwood, S. C., Bony, S. & Dufresne, J. L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014). [PMID: 24380952]
  6. Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 13, 3969–3993 (2000). [DOI: 10.1175/1520-0442(2000)013<3969]
  7. Back, L. E. & Bretherton, C. S. A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Clim. 22, 6477–6497 (2009). [DOI: 10.1175/2009JCLI2393.1]
  8. Zhang, C. D., Nolan, D. S., Thorncroft, C. D. & Nguyen, H. Shallow meridional circulations in the tropical atmosphere. J. Clim. 21, 3453–3470 (2008). [DOI: 10.1175/2007JCLI1870.1]
  9. Rui, L. & Fu, Y. Tropical precipitation estimated by GPCP and TRMM PR observations. Adv. Atmos. Sci. 22, 852–864 (2005). [DOI: 10.1007/BF02918685]
  10. Prakash, S., Mahesh, C. & Gairola, R. M. Comparison of TRMM Multi-satellite Precipitation Analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys. Remote Sens. Lett. 4, 677–685 (2013). [DOI: 10.1080/2150704X.2013.783248]
  11. Bellon, G., Reitebuch, O. & Naumann, A. K. Shallow circulations: relevance and strategies for satellite observation. Surv. Geophys. 38, 1509–1528 (2017). [DOI: 10.1007/s10712-017-9442-2]
  12. Li, G. & Xie, S. P. Tropical biases in CMIP5 multimodel ensemble: the excessive Equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014). [DOI: 10.1175/JCLI-D-13-00337.1]
  13. Xie, S. P. et al. Towards predictive understanding of regional climate change. Nat. Clim. Chang. 5, 921–930 (2015). [DOI: 10.1038/nclimate2689]
  14. Byrne, M. P. & Schneider, T. Energetic constraints on the width of the Intertropical Convergence Zone. J. Clim. 29, 4709–4721 (2016). [DOI: 10.1175/JCLI-D-15-0767.1]
  15. Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014). [DOI: 10.1007/s00382-013-1783-z]
  16. Zhang, X. X., Liu, H. L. & Zhang, M. H. Double ITCZ in coupled ocean-atmosphere models: from CMIP3 to CMIP5. Geophys. Res. Lett. 42, 8651–8659 (2015). [DOI: 10.1002/2015GL065973]
  17. Hirota, N. & Takayabu, Y. N. Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Clim. Dyn. 41, 2909–2920 (2013). [DOI: 10.1007/s00382-013-1839-0]
  18. Dixit, V., Geoffroy, O. & Sherwood, S. C. Control of ITCZ width by low-level radiative heating from upper-level clouds in aquaplanet simulations. Geophys. Res. Lett. 45, 5788–5797 (2018). [DOI: 10.1029/2018GL078292]
  19. He, J. et al. Precipitation sensitivity to local variations in tropical sea surface temperature. J. Clim. 31, 9225–9238 (2018). [DOI: 10.1175/JCLI-D-18-0262.1]
  20. Rushley, S. S., Kim, D., Bretherton, C. S. & Ahn, M. S. Reexamining the nonlinear moisture-precipitation relationship over the tropical oceans. Geophys. Res. Lett. 45, 1133–1140 (2018). [PMID: 29503484]
  21. Bretherton, C. S., Peters, M. E. & Back, L. E. Relationships between water vapor path and precipitation over the tropical oceans. J. Clim. 17, 1517–1528 (2004). [DOI: 10.1175/1520-0442(2004)017<1517]
  22. Kanemaru, K. & Masunaga, H. A satellite study of the relationship between sea surface temperature and column water vapor over tropical and subtropical oceans. J. Clim. 26, 4204–4218 (2013). [DOI: 10.1175/JCLI-D-12-00307.1]
  23. Tropical Rainfall Measuring Mission TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree × 0.25 degree V7 (TRMM_3B43) https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary (Goddard Earth Sciences Data and Information Services Center, 2011).
  24. Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007). [DOI: 10.1175/JHM560.1]
  25. Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018). [PMID: 30013797]
  26. McPhaden, M. J. et al. The tropical ocean global atmosphere observing system: a decade of progress. J. Geophys. Res. 103, 14169–14240 (1998). [DOI: 10.1029/97JC02906]
  27. McPhaden, M. J. et al. RAMA: The Research Moored Array for African-Asian-Australian monsoon analysis and prediction. Bull. Am. Meteorol. Soc. 90, 459–480 (2009). [DOI: 10.1175/2008BAMS2608.1]
  28. Bourles, B. et al. The PIRATA program: history, accomplishments, and future directions. Bull. Am. Meteorol. Soc. 89, https://doi.org/10.1175/2008BAMS2462.1 (2008).
  29. Serra, Y. L., A’Hearn, P., Freitag, H. P. & McPhaden, M. J. ATLAS self-siphoning rain gauge error estimates. J. Atmos. Ocean. Technol. 18, 1989–2002 (2001). [DOI: 10.1175/1520-0426(2001)018<1989]
  30. Taylor, K. E., Williamson, D. & Zwiers, F. W. The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. In Progr. Clim. Model Diagnosis Intercomparison (PCMDI) report 60, https://pcmdi.llnl.gov/report/ab60.html (2000).
  31. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 228–232 (2002). [PMID: 12226678]
  32. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, https://doi.org/10.1029/2002JD002670 (2003).
  33. Huang, B. Y. et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Clim. 28, 911–930 (2015). [DOI: 10.1175/JCLI-D-14-00006.1]
  34. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014). [DOI: 10.1175/JCLI-D-12-00837.1]
  35. Biasutti, M., Sobel, A. H. & Kushnir, Y. AGCM precipitation biases in the tropical Atlantic. J. Clim. 19, 935–958 (2006). [DOI: 10.1175/JCLI3673.1]
  36. Holloway, C. E. & Neelin, J. D. The convective cold top and quasi equilibrium. J. Atmos. Sci. 64, 1467–1487 (2007). [DOI: 10.1175/JAS3907.1]
  37. Nolan, D. S., Powell, S. W., Zhang, C. D. & Mapes, B. E. Idealized simulations of the Intertropical Convergence Zone and its multilevel flows. J. Atmos. Sci. 67, 4028–4053 (2010). [DOI: 10.1175/2010JAS3417.1]
  38. Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995). [DOI: 10.1175/1520-0442(1995)008<2181]
  39. Wu, Z. H. A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci. 60, 377–392 (2003). [DOI: 10.1175/1520-0469(2003)060<0377]
  40. Lin, Y. et al. TWP-ICE global atmospheric model intercomparison: convection responsiveness and resolution impact. J. Geophys. Res. Atmos. 117, https://doi.org/10.1029/2011JD017018 (2012).
  41. Randall, D. A. Beyond deadlock. Geophys. Res. Lett. 40, 5970–5976 (2013). [DOI: 10.1002/2013GL057998]
  42. Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL023851 (2005).
  43. Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6–1. J. Adv. Model. Earth Syst. (2019).
  44. Nie, J., Boos, W. R. & Kuang, Z. Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010). [DOI: 10.1175/2010JCLI3505.1]
  45. Stevens, B. & Bony, S. What are climate models missing? Science 340, 1053–1054 (2013). [PMID: 23723223]
  46. Oueslati, B. & Bellon, G. Convective entrainment and large-scale organization of tropical precipitation: sensitivity of the CNRM-CM5 hierarchy of models. J. Clim. 26, 2931–2946 (2013). [DOI: 10.1175/JCLI-D-12-00314.1]
  47. Vial, J., Bony, S., Stevens, B. & Vogel, R. Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv. Geophys. 38, 1331–1353 (2017). [PMID: 29238118]
  48. Fläschner, D., Mauritsen, T., Stevens, B. & Bony, S. The signature of shallow circulations, not cloud radiative effects, in the spatial distribution of tropical precipitation. J. Clim. 31, 9489–9505 (2018). [DOI: 10.1175/JCLI-D-18-0230.1]
  49. NASA SeaWinds on QuikSCAT Level 3 Surface Northward Wind for Climate Model Comparison (SNW-CMIP1) Version 1, https://doi.org/10.5067/QSSNW-CMIP1 (Physical Oceanography Distributed Active Archive Center, 2012).
  50. Gage, K. S., Williams, C. R. & Ecklund, W. L. UHF wind profilers: a new tool for diagnosing tropical convective cloud systems. Bull. Am. Meteorol. Soc. 75, 2289–2294 (1994). [DOI: 10.1175/1520-0477(1994)075<2289]
  51. Hutcheon, J. A., Chiolero, A. & Hanley, J. A. Random measurement error and regression dilution bias. Br. Med. J. 340, c2289 (2010). [DOI: 10.1136/bmj.c2289]

Grants

  1. 80NSSC17K0227/Intramural NASA

MeSH Term

Atmosphere
Models, Theoretical
Oceans and Seas
Rain
Reproducibility of Results
Satellite Communications
Temperature
Tropical Climate
Uncertainty
Water Movements
Wind

Word Cloud

Created with Highcharts 10.0.0precipitationtropicalsurfaceclimateseacirculationsobservationssensitivitylocalshallowbiasesmodeltemperatureperatmosphericweatherremoteENSOacrossassociatedunderstandingresearchwideforecastsprojectionsseasonalchangePrecipitationcirculationcoupledprocessesoceantemperaturesdriveglobalLocalwarmingtendsincreasecontroldifficultdisentangleeffectsconditionselsewhereexampleeffectElNiñoSouthernOscillationeventsequatorialPacificOceanaltertropicsAtmosphericpredominantlydeepextendingtropopauseShallowaffectinglowertropospherealsooccurimportanceinteractionunclearUncertaintylimitedobstructocean'sinfluenceDespitedecadespersistentremainmanynumericalsimulationsincludingexcessivelyrainbands'double-intertropicalconvergencezoneproblem'too-weakresponsesdemonstrategapsreducingconfidenceuseshowhighbestobservationalestimate80centeverygramkilogramsaturationspecifichumidityfunctionobservedhigher4347modelsstudiedstrongModelsrealisticcloser80%smallerrangemetricsresultsapplytemporalspatialvariationregionsclimatologicalonemillimetredayanalysesmultipleindependentphysicalconstraintsdataunderpinfindingsspreadbehaviourlinkeddifferencesconvectionthusprovidingfocusacceleratedimprovemultidecadalHigh

Similar Articles

Cited By