Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds.

Hongwei Shao, Yan Li, Irena Pastar, Min Xiao, Rochelle Prokupets, Sophia Liu, Kerstin Yu, Roberto I Vazquez-Padron, Marjana Tomic-Canic, Omaida C Velazquez, Zhao-Jun Liu
Author Information
  1. Hongwei Shao: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA. ORCID
  2. Yan Li: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  3. Irena Pastar: Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA. ORCID
  4. Min Xiao: Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  5. Rochelle Prokupets: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  6. Sophia Liu: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  7. Kerstin Yu: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  8. Roberto I Vazquez-Padron: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  9. Marjana Tomic-Canic: Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  10. Omaida C Velazquez: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA.
  11. Zhao-Jun Liu: Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA zliu@med.miami.edu. ORCID

Abstract

Fibroblasts play a pivotal role in wound healing. However, the molecular mechanisms determining the reparative response of fibroblasts remain unknown. Here, we identify Notch1 signaling as a molecular determinant controlling the plasticity and function of fibroblasts in modulating wound healing and angiogenesis. The Notch pathway is activated in fibroblasts of diabetic wounds but not in normal skin and non-diabetic wounds. Consistently, wound healing in the mouse, in which Notch1 is activated in fibroblasts, is delayed. Increased Notch1 activity in fibroblasts suppressed their growth, migration, and differentiation into myofibroblasts. Accordingly, significantly fewer myofibroblasts and less collagen were present in granulation tissues of the mice, demonstrating that high Notch1 activity inhibits fibroblast differentiation. High Notch1 activity in fibroblasts diminished their role in modulating the angiogenic response. We also identified that IL-6 is a functional Notch1 target and involved in regulating angiogenesis. These findings suggest that Notch1 signaling determines the plasticity and function of fibroblasts in wound healing and angiogenesis, unveiling intracellular Notch1 signaling in fibroblasts as potential target for therapeutic intervention in diabetic wound healing.

References

  1. Hum Pathol. 1981 Jun;12(6):491-2 [PMID: 6268524]
  2. Sci Transl Med. 2014 Dec 3;6(265):265sr6 [PMID: 25473038]
  3. Exp Dermatol. 2013 Mar;22(3):195-201 [PMID: 23489422]
  4. Exp Dermatol. 2018 May;27(5):551-562 [PMID: 29660181]
  5. Immunity. 1999 May;10(5):547-58 [PMID: 10367900]
  6. Nat Rev Cancer. 2016 Aug 23;16(9):582-98 [PMID: 27550820]
  7. Clin Dermatol. 2007 Jan-Feb;25(1):9-18 [PMID: 17276196]
  8. FASEB J. 2002 Aug;16(10):1316-8 [PMID: 12060671]
  9. Oral Dis. 2018 Mar;24(1-2):26-29 [PMID: 29480623]
  10. J Biol Chem. 2004 May 14;279(20):21266-70 [PMID: 15016829]
  11. Curr Res Transl Med. 2016 Oct - Dec;64(4):171-177 [PMID: 27939455]
  12. Histol Histopathol. 2001 Apr;16(2):669-74 [PMID: 11332722]
  13. Hum Pathol. 1974 Jan;5(1):55-67 [PMID: 4588257]
  14. Curr Top Pathol. 1999;93:123-33 [PMID: 10339905]
  15. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14799-804 [PMID: 20668241]
  16. Indian J Nephrol. 2010 Jan;20(1):34-9 [PMID: 20535269]
  17. Oncogene. 2008 Oct 16;27(47):6164-74 [PMID: 18641686]
  18. Nat Protoc. 2008;3(11):1703-8 [PMID: 18846097]
  19. Lancet. 2005 Nov 12;366(9498):1736-43 [PMID: 16291068]
  20. J Biol Chem. 2015 Mar 13;290(11):6951-61 [PMID: 25627685]
  21. Cytokine Growth Factor Rev. 2018 Feb;39:137-150 [PMID: 29395658]
  22. N Engl J Med. 1986 Dec 25;315(26):1650-9 [PMID: 3537791]
  23. Antioxid Redox Signal. 2008 Nov;10(11):1869-82 [PMID: 18627349]
  24. In Vitro Cell Dev Biol Anim. 1995 Jun;31(6):447-55 [PMID: 8589888]
  25. Wound Repair Regen. 2006 Sep-Oct;14(5):558-65 [PMID: 17014667]
  26. Adv Wound Care (New Rochelle). 2016 Mar 1;5(3):119-136 [PMID: 26989578]
  27. J Invest Dermatol. 2007 May;127(5):998-1008 [PMID: 17435785]
  28. Front Immunol. 2017 Jun 01;8:635 [PMID: 28620387]
  29. Vasc Endovascular Surg. 2005 Jul-Aug;39(4):293-306 [PMID: 16079938]
  30. Wound Repair Regen. 2015 Jan-Feb;23(1):1-13 [PMID: 25486905]
  31. Mol Cell Biol. 2003 Jan;23(1):14-25 [PMID: 12482957]
  32. Circulation. 2003 May 20;107(19):2428-34 [PMID: 12742994]
  33. J Tissue Viability. 2011 Nov;20(4):108-20 [PMID: 19995679]
  34. Oncogene. 2011 Oct 20;30(42):4316-26 [PMID: 21516124]
  35. PLoS One. 2015 Nov 12;10(11):e0142815 [PMID: 26562315]
  36. PLoS One. 2015 Aug 28;10(8):e0137133 [PMID: 26318001]
  37. FASEB J. 2003 Oct;17(13):1931-3 [PMID: 14519669]
  38. Virchows Arch A Pathol Anat Histol. 1981;391(2):125-39 [PMID: 7013254]
  39. Diabetes. 2013 Mar;62(3):923-30 [PMID: 23139351]
  40. J Clin Invest. 2007 May;117(5):1219-22 [PMID: 17476353]
  41. Cancer Res. 2001 Nov 15;61(22):8306-16 [PMID: 11719464]
  42. Cell Cycle. 2006 Aug;5(15):1597-601 [PMID: 16880743]
  43. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10061-5 [PMID: 7694279]
  44. J Transl Med. 2008 Dec 01;6:75 [PMID: 19046453]
  45. FASEB J. 2019 Jan;33(1):1262-1277 [PMID: 30088952]
  46. J Clin Invest. 2007 May;117(5):1249-59 [PMID: 17476357]
  47. Biochem Pharmacol. 2010 Sep 1;80(5):690-701 [PMID: 20361945]
  48. Cytokine. 1994 Jan;6(1):87-91 [PMID: 8003639]
  49. Blood. 1995 Aug 15;86(4):1243-54 [PMID: 7632928]
  50. Nat Med. 1995 Jan;1(1):27-31 [PMID: 7584949]
  51. J Invest Dermatol. 2017 May;137(5):1144-1154 [PMID: 28017831]
  52. Regen Med. 2018 Jul 1;13(5):491-495 [PMID: 30062921]
  53. PLoS Negl Trop Dis. 2018 Mar 19;12(3):e0006357 [PMID: 29554101]
  54. Lab Invest. 1990 Jul;63(1):21-9 [PMID: 2197503]
  55. J Dermatol Sci. 2013 Dec;72(3):206-17 [PMID: 23958517]
  56. Cancer Biol Ther. 2007 Apr;6(4):618-9 [PMID: 18027438]
  57. Eur J Clin Microbiol Infect Dis. 2016 Feb;35(2):293-8 [PMID: 26670675]
  58. J Surg Res. 2018 Aug;228:68-76 [PMID: 29907232]
  59. Biochem Biophys Res Commun. 2006 Apr 21;342(4):1396-404 [PMID: 16516857]
  60. Curr Opin Hematol. 2008 May;15(3):204-9 [PMID: 18391786]
  61. Cytokine. 2004 Mar 21;25(6):265-72 [PMID: 15036242]
  62. Dis Model Mech. 2018 Apr 19;11(4): [PMID: 29686035]
  63. J Biol Chem. 1996 Jan 12;271(2):736-41 [PMID: 8557680]
  64. Oncotarget. 2016 Nov 29;7(48):79262-79273 [PMID: 27813493]
  65. J Dermatol Sci. 2000 Dec;24 Suppl 1:S70-7 [PMID: 11137399]
  66. Wound Repair Regen. 2016 Nov;24(6):943-953 [PMID: 27607190]
  67. J Invest Dermatol. 2017 Apr;137(4):941-950 [PMID: 28017830]
  68. Arthritis Rheum. 2006 Nov;54(11):3655-60 [PMID: 17075814]
  69. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6985-6994 [PMID: 30886104]
  70. J Invest Dermatol. 2016 Jan;136(1):342-344 [PMID: 26763462]
  71. Adv Wound Care (New Rochelle). 2014 Jul 1;3(7):445-464 [PMID: 25032064]
  72. Int J Mol Sci. 2018 Oct 18;19(10): [PMID: 30340330]
  73. Wound Repair Regen. 2016 Jul;24(4):630-43 [PMID: 27102877]
  74. Cytokine. 2000 Jun;12(6):655-65 [PMID: 10843741]
  75. Adv Pharmacol. 2012;65:191-234 [PMID: 22959027]
  76. Int J Mol Sci. 2015 Oct 23;16(10):25476-501 [PMID: 26512657]
  77. Plast Reconstr Surg Glob Open. 2015 Aug 10;3(7):e471 [PMID: 26301160]
  78. Atherosclerosis. 2006 Jul;187(1):18-25 [PMID: 16360159]
  79. Plast Reconstr Surg. 2016 Sep;138(3 Suppl):18S-28S [PMID: 27556760]
  80. J Invest Dermatol. 2018 May;138(5):1187-1196 [PMID: 29273315]
  81. J Vasc Surg. 2007 Jun;45 Suppl A:A39-47 [PMID: 17544023]
  82. PLoS One. 2012;7(6):e38811 [PMID: 22715413]
  83. J Clin Invest. 2005 Nov;115(11):3166-76 [PMID: 16239965]

Grants

  1. R01 NR013881/NINR NIH HHS
  2. U01 DK119085/NIDDK NIH HHS
  3. R01 HL149452/NHLBI NIH HHS
  4. R01 NR015649/NINR NIH HHS
  5. R01 DK071084/NIDDK NIH HHS
  6. R01 AR073614/NIAMS NIH HHS
  7. R01 GM081570/NIGMS NIH HHS

MeSH Term

Adult
Animals
Cell Differentiation
Cell Movement
Cell Plasticity
Cell Proliferation
Diabetes Mellitus
Female
Fibroblasts
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Middle Aged
Neovascularization, Physiologic
Receptor, Notch1
Signal Transduction
Wound Healing

Chemicals

NOTCH1 protein, human
Notch1 protein, mouse
Receptor, Notch1

Word Cloud

Created with Highcharts 10.0.0fibroblastsNotch1woundhealingsignalingplasticityfunctionangiogenesisdiabeticwoundsactivityrolemolecularresponsemodulatingactivateddifferentiationmyofibroblaststargetdeterminesFibroblastsplaypivotalHowevermechanismsdeterminingreparativeremainunknownidentifydeterminantcontrollingNotchpathwaynormalskinnon-diabeticConsistentlymousedelayedIncreasedsuppressedgrowthmigrationAccordinglysignificantlyfewerlesscollagenpresentgranulationtissuesmicedemonstratinghighinhibitsfibroblastHighdiminishedangiogenicalsoidentifiedIL-6functionalinvolvedregulatingfindingssuggestunveilingintracellularpotentialtherapeuticintervention

Similar Articles

Cited By