Analysis of complete genomes identifies genomospecies features, secretion systems and novel plasmids and their association with severe ulcerative colitis.

Fang Liu, Siying Chen, Laurence Don Wai Luu, Seul A Lee, Alfred Chin Yen Tay, Ruochen Wu, Stephen M Riordan, Ruiting Lan, Lu Liu, Li Zhang
Author Information
  1. Fang Liu: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  2. Siying Chen: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  3. Laurence Don Wai Luu: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  4. Seul A Lee: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  5. Alfred Chin Yen Tay: Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
  6. Ruochen Wu: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  7. Stephen M Riordan: Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia.
  8. Ruiting Lan: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
  9. Lu Liu: School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
  10. Li Zhang: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.

Abstract

is an emerging enteric pathogen that is associated with several gastrointestinal diseases, such as inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). Currently, only three complete genomes are available and more complete genomes are needed in order to better understand the genomic features and pathogenicity of this emerging pathogen. DNA extracted from 22 . strains were subjected to Oxford Nanopore genome sequencing. Complete genome assembly was performed using Nanopore genome data in combination with previously reported short-read Illumina data. Genome features of complete genomes were analysed using bioinformatic tools. The enteric disease associations of plasmids were examined using 239 . strains and confirmed using PCRs. Proteomic analysis was used to examine T6SS secreted proteins. We successfully obtained 13 complete genomes in this study. Analysis of 16 complete genomes (3 from public databases) identified multiple novel plasmids. pSma1 plasmid was found to be associated with severe UC. Sec-SRP, Tat and T6SS were found to be the main secretion systems in and proteomic data showed a functional T6SS despite the lack of ClpV. T4SS was found in 25% of complete genomes. This study also found that GS2 strains had larger genomes and higher GC content than GS1 strains and more often had plasmids. In conclusion, this study provides fundamental genomic data for understanding plasmids, genomospecies features, evolution, secretion systems and pathogenicity.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.12279473

References

  1. Clin Microbiol Infect. 2013 May;19(5):445-50 [PMID: 22512739]
  2. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  3. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  4. Sci Rep. 2018 Jan 30;8(1):1902 [PMID: 29382867]
  5. Emerg Microbes Infect. 2018 Apr 11;7(1):64 [PMID: 29636463]
  6. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595 [PMID: 28594827]
  7. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  8. PLoS One. 2013 Sep 23;8(9):e75525 [PMID: 24086553]
  9. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  10. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  11. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]
  12. Front Cell Infect Microbiol. 2012 Apr 02;2:45 [PMID: 22919636]
  13. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  14. J Clin Microbiol. 2010 Aug;48(8):2965-7 [PMID: 20519479]
  15. Emerg Microbes Infect. 2018 Jun 26;7(1):116 [PMID: 29946138]
  16. Clin Infect Dis. 2007 Jul 1;45(1):29-38 [PMID: 17554697]
  17. Nucleic Acids Res. 2016 Aug 19;44(14):6614-24 [PMID: 27342282]
  18. Front Physiol. 2017 Aug 03;8:543 [PMID: 28824443]
  19. Gut Pathog. 2020 Mar 5;12:13 [PMID: 32165925]
  20. BMC Genomics. 2013 Aug 28;14:585 [PMID: 23984967]
  21. Scand J Infect Dis. 1995;27(2):187-8 [PMID: 7660089]
  22. PLoS One. 2011;6(6):e21490 [PMID: 21738679]
  23. Int J Microbiol. 2014;2014:476047 [PMID: 25214843]
  24. Bioinformatics. 2016 Jan 15;32(2):292-4 [PMID: 26428292]
  25. Gut Pathog. 2016 Sep 22;8:44 [PMID: 27688814]
  26. J Clin Microbiol. 2009 Feb;47(2):453-5 [PMID: 19052183]
  27. J Clin Microbiol. 2000 Jul;38(7):2798-9 [PMID: 10979752]
  28. Br Dent J. 2017 Apr 7;222(7):549-553 [PMID: 28387295]
  29. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  30. Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279 [PMID: 27646134]
  31. Microbiol Spectr. 2016 Feb;4(1): [PMID: 26999395]
  32. Gut Pathog. 2016 Jun 01;8:27 [PMID: 27252786]
  33. FEBS J. 2018 Nov;285(21):4060-4070 [PMID: 30194714]
  34. Nat Rev Microbiol. 2005 Sep;3(9):722-32 [PMID: 16138100]
  35. World J Gastroenterol. 2015 Aug 21;21(31):9239-44 [PMID: 26309350]
  36. Cell Microbiol. 2013 Jun;15(6):992-1011 [PMID: 23278999]
  37. PLoS One. 2012;7(5):e38217 [PMID: 22666490]
  38. PLoS One. 2011;6(9):e25417 [PMID: 21966525]
  39. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  40. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  41. Antimicrob Agents Chemother. 2009 Jun;53(6):2650-3 [PMID: 19332682]
  42. Sci Rep. 2016 Dec 02;6:38442 [PMID: 27910936]
  43. Genome Announc. 2017 Jul 20;5(29): [PMID: 28729281]
  44. Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7 [PMID: 26578559]
  45. Genome Biol Evol. 2013;5(11):2217-30 [PMID: 24201373]
  46. Antimicrob Agents Chemother. 2013 Jan;57(1):597-600 [PMID: 23070168]
  47. PLoS Pathog. 2013;9(5):e1003393 [PMID: 23737749]
  48. Mol Plant Pathol. 2003 May 1;4(3):141-57 [PMID: 20569374]
  49. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  50. PLoS One. 2014 Jun 25;9(6):e100502 [PMID: 24963913]
  51. Zoonoses Public Health. 2015 Nov;62(7):497-500 [PMID: 25496466]
  52. Microbiology (Reading). 2015 Aug;161(8):1600-1612 [PMID: 26002953]
  53. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  54. J Biol Chem. 2004 Apr 9;279(15):15124-9 [PMID: 14736866]
  55. Bioinformatics. 2020 Apr 1;36(7):2251-2252 [PMID: 31742321]

MeSH Term

Base Composition
Campylobacter
Campylobacter Infections
Colitis, Ulcerative
Computational Biology
Genome, Bacterial
Humans
Phylogeny
Plasmids
Type VI Secretion Systems
Whole Genome Sequencing

Chemicals

Type VI Secretion Systems

Word Cloud

Created with Highcharts 10.0.0genomescompleteplasmidsdiseasefeaturesstrainsusingdatafoundsecretionulcerativecolitisgenomeT6SSstudysystemsemergingentericpathogenassociatedinflammatorybowelUCgenomicpathogenicityNanoporeAnalysisnovelseveregenomospeciesseveralgastrointestinaldiseasesIBDincludesCrohn'sCDCurrentlythreeavailableneededorderbetterunderstandDNAextracted22subjectedOxfordsequencingCompleteassemblyperformedcombinationpreviouslyreportedshort-readIlluminaGenomeanalysedbioinformatictoolsassociationsexamined239confirmedPCRsProteomicanalysisusedexaminesecretedproteinssuccessfullyobtained13163publicdatabasesidentifiedmultiplepSma1plasmidSec-SRPTatmainproteomicshowedfunctionaldespitelackClpVT4SS25%alsoGS2largerhigherGCcontentGS1oftenconclusionprovidesfundamentalunderstandingevolutionidentifiesassociationCampylobacterconcisusCampylobacterssystem

Similar Articles

Cited By