Graphene memristive synapses for high precision neuromorphic computing.

Thomas F Schranghamer, Aaryan Oberoi, Saptarshi Das
Author Information
  1. Thomas F Schranghamer: Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA.
  2. Aaryan Oberoi: Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA. ORCID
  3. Saptarshi Das: Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA. sud70@psu.edu. ORCID

Abstract

Memristive crossbar architectures are evolving as powerful in-memory computing engines for artificial neural networks. However, the limited number of non-volatile conductance states offered by state-of-the-art memristors is a concern for their hardware implementation since trained weights must be rounded to the nearest conductance states, introducing error which can significantly limit inference accuracy. Moreover, the incapability of precise weight updates can lead to convergence problems and slowdown of on-chip training. In this article, we circumvent these challenges by introducing graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states. We also show desirable retention and programming endurance. Finally, we demonstrate that graphene memristors enable weight assignment based on k-means clustering, which offers greater computing accuracy when compared with uniform weight quantization for vector matrix multiplication, an essential component for any artificial neural network.

References

  1. Nat Commun. 2019 Sep 13;10(1):4199 [PMID: 31519885]
  2. Nano Lett. 2016 Jul 13;16(7):4447-53 [PMID: 27248183]
  3. Nat Rev Neurosci. 2000 Oct;1(1):11-20 [PMID: 11252764]
  4. ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11945-11954 [PMID: 32052957]
  5. J Chem Phys. 2010 Jul 28;133(4):044703 [PMID: 20687672]
  6. Nat Commun. 2016 Sep 29;7:12611 [PMID: 27681181]
  7. Phys Chem Chem Phys. 2015 Sep 28;17(36):23460-7 [PMID: 26291298]
  8. ACS Nano. 2010 Dec 28;4(12):7221-8 [PMID: 21047068]
  9. Adv Mater. 2014 Aug 20;26(31):5496-503 [PMID: 24497002]
  10. Sci Rep. 2017 Dec 13;7(1):17532 [PMID: 29235524]
  11. Adv Mater. 2018 Mar;30(9): [PMID: 29318659]
  12. Nat Nanotechnol. 2013 Jan;8(1):13-24 [PMID: 23269430]
  13. Nature. 1977 Apr 21;266(5604):737-9 [PMID: 195211]
  14. Nano Lett. 2008 Oct;8(10):3345-9 [PMID: 18729415]
  15. Adv Mater. 2018 Aug;30(35):e1801447 [PMID: 30015988]
  16. Small. 2010 Nov 22;6(22):2535-8 [PMID: 20963796]
  17. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  18. Nat Mater. 2008 Dec;7(12):966-71 [PMID: 19011617]
  19. Nanoscale Res Lett. 2012 Jun 26;7(1):345 [PMID: 22734564]
  20. Adv Mater. 2019 Dec;31(49):e1902761 [PMID: 31550405]
  21. Nat Commun. 2018 Jun 13;9(1):2331 [PMID: 29899421]
  22. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  23. RSC Adv. 2019 Mar 25;9(17):9494-9499 [PMID: 35520720]

Word Cloud

Created with Highcharts 10.0.0computingconductancestatesweightartificialneuralnon-volatilememristorsintroducingcanaccuracymemristivesynapsesMemristivecrossbararchitecturesevolvingpowerfulin-memoryenginesnetworksHoweverlimitednumberofferedstate-of-the-artconcernhardwareimplementationsincetrainedweightsmustroundednearesterrorsignificantlylimitinferenceMoreoverincapabilitypreciseupdatesleadconvergenceproblemsslowdownon-chiptrainingarticlecircumventchallengesgraphene-basedmulti-level>16arbitrarilyprogrammablealsoshowdesirableretentionprogrammingenduranceFinallydemonstrategrapheneenableassignmentbasedk-meansclusteringoffersgreatercompareduniformquantizationvectormatrixmultiplicationessentialcomponentnetworkGraphenehighprecisionneuromorphic

Similar Articles

Cited By