Insights on Molecular Mechanisms of Ovarian Development in Decapod Crustacea: Focus on Vitellogenesis-Stimulating Factors and Pathways.

Vidya Jayasankar, Sherly Tomy, Marcy N Wilder
Author Information
  1. Vidya Jayasankar: Marine Biotechnology Division, Madras Research Centre, ICAR-Central Marine Fisheries Research Institute, Chennai, India.
  2. Sherly Tomy: Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India.
  3. Marcy N Wilder: Fisheries Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan.

Abstract

Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca in target tissues leading to the regulation of vitellogenesis. The "stimulatory paradox" effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.

Keywords

References

  1. Gen Comp Endocrinol. 2013 Nov 1;193:10-8 [PMID: 23867230]
  2. Nature. 2000 Nov 23;408(6811):470-5 [PMID: 11100728]
  3. Mol Reprod Dev. 1998 Mar;49(3):333-41 [PMID: 9491386]
  4. Cold Spring Harb Perspect Biol. 2011 Oct 01;3(10):a005553 [PMID: 21709181]
  5. Gen Comp Endocrinol. 2012 Jan 15;175(2):217-33 [PMID: 22146796]
  6. J Exp Zool A Ecol Genet Physiol. 2010 Nov 1;313(9):605-17 [PMID: 20683865]
  7. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 [PMID: 19393655]
  8. Science. 1972 Jul 14;177(4044):173-5 [PMID: 5041363]
  9. J Neurochem. 2014 Dec;131(6):767-77 [PMID: 25187179]
  10. Aquat Toxicol. 2004 Aug 10;69(2):165-74 [PMID: 15261452]
  11. Gen Comp Endocrinol. 2006 Sep 1;148(2):245-51 [PMID: 16624310]
  12. PLoS One. 2014 Dec 26;9(12):e115867 [PMID: 25542017]
  13. Development. 2001 Apr;128(8):1415-27 [PMID: 11262241]
  14. Comp Biochem Physiol A Mol Integr Physiol. 2014 Sep;175:124-30 [PMID: 24937259]
  15. Front Physiol. 2019 Dec 20;10:1525 [PMID: 31920723]
  16. J Cell Sci. 2002 Jun 15;115(Pt 12):2457-9 [PMID: 12045215]
  17. Mol Reprod Dev. 2006 Apr;73(4):424-36 [PMID: 16425293]
  18. Indian J Exp Biol. 2005 Mar;43(3):209-23 [PMID: 15816407]
  19. Nat Ecol Evol. 2018 Mar;2(3):567-573 [PMID: 29403072]
  20. Biol Bull. 2015 Apr;228(2):118-24 [PMID: 25920715]
  21. Gen Comp Endocrinol. 2016 Sep 15;236:70-82 [PMID: 27401259]
  22. PLoS One. 2015 Dec 30;10(12):e0145964 [PMID: 26716450]
  23. Biol Reprod. 2014 Mar 06;90(3):47 [PMID: 24451988]
  24. Front Endocrinol (Lausanne). 2020 Apr 30;11:226 [PMID: 32425883]
  25. Cell Tissue Res. 2011 Jul;345(1):41-67 [PMID: 21597913]
  26. Gen Comp Endocrinol. 2014 Aug 1;204:114-25 [PMID: 24842716]
  27. Front Neurosci. 2018 Jan 15;11:752 [PMID: 29379412]
  28. Eur J Biochem. 2002 Jul;269(14):3587-95 [PMID: 12135499]
  29. Gen Comp Endocrinol. 2009 Feb 1;160(3):271-87 [PMID: 19135444]
  30. J Exp Biol. 1995;198(Pt 6):1253-7 [PMID: 9319116]
  31. Gen Comp Endocrinol. 2019 Apr 1;274:60-72 [PMID: 30611813]
  32. Gene. 2018 Jul 30;665:111-118 [PMID: 29730424]
  33. Gen Comp Endocrinol. 2010 Apr 1;166(2):330-6 [PMID: 19925802]
  34. Gen Comp Endocrinol. 1998 Aug;111(2):113-8 [PMID: 9679083]
  35. Comp Biochem Physiol A Mol Integr Physiol. 2008 Oct;151(2):191-7 [PMID: 18634897]
  36. J Biol Chem. 1996 May 31;271(22):12749-54 [PMID: 8662685]
  37. Front Neuroendocrinol. 2002 Jan;23(1):41-100 [PMID: 11906203]
  38. Environ Pollut. 2019 Oct;253:882-888 [PMID: 31349197]
  39. Biol Reprod. 2014 Jan 23;90(1):12 [PMID: 24337313]
  40. Mol Reprod Dev. 2002 Sep;63(1):55-62 [PMID: 12211061]
  41. Cell Tissue Res. 2011 Jul;345(1):103-24 [PMID: 21607566]
  42. Gen Comp Endocrinol. 2010 Mar 1;166(1):104-10 [PMID: 19686751]
  43. J Exp Zool. 2002 Dec 1;293(7):736-9 [PMID: 12410602]
  44. Invert Neurosci. 2018 Mar 20;18(2):5 [PMID: 29560546]
  45. Mar Biotechnol (NY). 2007 May-Jun;9(3):360-9 [PMID: 17357858]
  46. J Exp Biol. 1991 Jan;155:21-35 [PMID: 2016574]
  47. Nature. 1990 Apr 12;344(6267):678-82 [PMID: 2157987]
  48. J Exp Zool A Ecol Genet Physiol. 2016 Nov;325(9):565-580 [PMID: 27935256]
  49. Zoolog Sci. 2005 Jun;22(6):675-80 [PMID: 15988163]
  50. J Comp Physiol A. 2000 Mar;186(3):221-38 [PMID: 10757238]
  51. Biol Open. 2017 Feb 15;6(2):161-164 [PMID: 27965197]
  52. Gen Comp Endocrinol. 2012 Feb 1;175(3):357-66 [PMID: 22197211]
  53. Gen Comp Endocrinol. 2013 May 1;185:28-36 [PMID: 23376531]
  54. Front Physiol. 2019 Jun 19;10:797 [PMID: 31275175]
  55. Cell Mol Life Sci. 2010 Dec;67(24):4135-69 [PMID: 20725764]
  56. J Insect Physiol. 2005 Apr;51(4):379-84 [PMID: 15890180]
  57. Mar Biotechnol (NY). 2011 Apr;13(2):163-9 [PMID: 20333425]
  58. Chem Rev. 2008 May;108(5):1614-41 [PMID: 18476671]
  59. Tissue Cell. 2012 Apr;44(2):95-100 [PMID: 22218110]
  60. Biochem Biophys Res Commun. 2017 Sep 2;490(4):1340-1345 [PMID: 28690150]
  61. J Biol Chem. 2018 Dec 28;293(52):20112-20122 [PMID: 30385509]
  62. J Exp Biol. 2011 Jan 1;214(Pt 1):3-16 [PMID: 21147963]
  63. BMC Genomics. 2014 Jul 01;15:547 [PMID: 24984770]
  64. Arch Insect Biochem Physiol. 2001 Sep;48(1):13-38 [PMID: 11519073]
  65. Gen Comp Endocrinol. 2016 Mar 1;228:111-127 [PMID: 26850661]
  66. Arthropod Struct Dev. 2003 Aug;32(1):39-60 [PMID: 18088995]
  67. Science. 1987 Jan 9;235(4785):202-5 [PMID: 17778635]
  68. J Endocrinol. 1998 Feb;156(2):291-8 [PMID: 9518875]
  69. PLoS One. 2019 Jan 29;14(1):e0203980 [PMID: 30695038]
  70. Comp Biochem Physiol A Mol Integr Physiol. 2001 Sep;130(2):283-94 [PMID: 11544073]
  71. Gen Comp Endocrinol. 2002 Jan;125(1):34-40 [PMID: 11825032]
  72. J Endocrinol. 2011 Sep;210(3):379-90 [PMID: 21730047]
  73. Biol Bull. 2010 Feb;218(1):36-47 [PMID: 20203252]
  74. FEBS J. 2007 Sep;274(17):4385-95 [PMID: 17725713]
  75. Anim Reprod Sci. 2016 Jan;164:152-61 [PMID: 26679434]
  76. J Exp Biol. 2020 Feb 5;223(Pt 3): [PMID: 31953363]
  77. Mol Biochem Parasitol. 2013 Jan;187(1):32-42 [PMID: 23246818]
  78. Comp Biochem Physiol A Mol Integr Physiol. 2015 Jul;185:1-8 [PMID: 25770669]
  79. Acta Histochem. 2020 Jan;122(1):151457 [PMID: 31708231]
  80. Peptides. 2015 Jun;68:58-63 [PMID: 25447412]
  81. Comp Biochem Physiol A Mol Integr Physiol. 2006 Feb;143(2):246-53 [PMID: 16423545]
  82. Comp Biochem Physiol B Biochem Mol Biol. 2019 Jun;232:79-86 [PMID: 30880278]
  83. Dev Biol. 1989 May;133(1):58-66 [PMID: 2540053]
  84. Nat Commun. 2019 Jan 21;10(1):356 [PMID: 30664654]
  85. Mar Biotechnol (NY). 2016 Feb;18(1):117-23 [PMID: 26573611]
  86. Gen Comp Endocrinol. 2008 Sep 15;158(3):250-8 [PMID: 18713629]
  87. Neurochem Int. 1994 Dec;25(6):503-32 [PMID: 7894328]
  88. Front Endocrinol (Lausanne). 2019 Apr 12;10:231 [PMID: 31031708]
  89. Gen Comp Endocrinol. 2017 May 15;246:301-308 [PMID: 28062305]
  90. Comp Biochem Physiol B Biochem Mol Biol. 2009 Mar;152(3):243-8 [PMID: 19118638]
  91. Comp Biochem Physiol C Toxicol Pharmacol. 2000 Feb;125(2):135-56 [PMID: 11790337]
  92. Gen Comp Endocrinol. 1993 Mar;89(3):425-32 [PMID: 8335230]
  93. Cell Signal. 2001 Nov;13(11):777-85 [PMID: 11583913]
  94. Comp Biochem Physiol A Mol Integr Physiol. 2019 Nov;237:110552 [PMID: 31437564]
  95. Gen Comp Endocrinol. 2000 May;118(2):200-8 [PMID: 10890562]
  96. Mol Reprod Dev. 2005 Mar;70(3):288-300 [PMID: 15625694]
  97. Gen Comp Endocrinol. 2019 Dec 1;284:113075 [PMID: 30500374]
  98. Mol Cell Endocrinol. 2009 Oct 15;309(1-2):109-16 [PMID: 19486925]
  99. PLoS One. 2011;6(9):e24427 [PMID: 21915325]
  100. J Exp Biol. 2018 Oct 4;221(Pt 19): [PMID: 30287590]
  101. Gen Comp Endocrinol. 2010 Apr 1;166(2):337-45 [PMID: 19919838]
  102. Sci Rep. 2017 Jul 31;7(1):6851 [PMID: 28761110]
  103. Comp Biochem Physiol A Mol Integr Physiol. 2001 Feb;128(2):299-306 [PMID: 11223391]
  104. Front Biosci (Landmark Ed). 2010 Jun 01;15:1040-74 [PMID: 20515741]

MeSH Term

Animals
Arthropod Proteins
Female
Invertebrate Hormones
Nerve Tissue Proteins
Oogenesis
Ovary
Penaeidae
Reproduction
Signal Transduction
Vitellogenesis

Chemicals

Arthropod Proteins
Invertebrate Hormones
Nerve Tissue Proteins
hyperglycemic hormone, crustacean

Word Cloud

Created with Highcharts 10.0.0ovarianmaturationfactorsneuromediatorscrustaceanhormonevitellogenesisreproductionmechanismsstimulatingstimulatoryeffectsresearcheyestalkaquacultureprocessdecapodinhibitorycomplexneuropeptidesputativereceptorshormoneseffectpossiblyablationcommercialdevelopmentsignalingVitellogenesiscrustaceansenergy-consumingThoughunderlyingCrustaceastillunclearevidenceindicatesregulatedantagonistically-actingspecificallyoriginatingX-organ/sinusglandXO/SGAmongreportedbelonginghyperglycemicCHH-familystudiedextensivelystructuredynamicsactionvitellogenesis-inhibitingVIHdemonstratedseveralspeciesSimilarlyCHH-familyalsovalidatedAdvancementtranscriptomicsequencingcomparativegenomeanalysisleddiscoverylargenumberpeptidespeptidepleiotropicnovelfunctionsFurthermoredifferingstrategiesindicatedneurotransmitterssteroidplayintegrativeroleneuropeptidesecretionthusdemonstratingintertwiningregulatoryHowevermolecularcombinatorialcoordinateregulateremainelusivemultifunctionalsubstancesspeculatedcontrolviaautocrine/paracrinepathwayactingdirectlygonadsindirectlyexertingtriggeringreleasegonadfactorthoracicganglionActingaffectlevelscyclicnucleotidescAMPcGMPCatargettissuesleadingregulation"stimulatoryparadox"continuesexploitedoperationsoutweigheddetrimentalphysiologicalprocedureregardefficientalternativesbasedscientificknowledgenecessityarticlefocusprincipallypathwayspositiveregulatingprovidingoverviewproposedreceptor-mediatedintracellularprobableinteractionhormonalsignalsFinallyprovideinsightfuturedirectionswellpotentialapplicationstechnologyInsightsMolecularMechanismsOvarianDevelopmentDecapodCrustacea:FocusVitellogenesis-StimulatingFactorsPathwayscrustaceamethylfarmesoateredpigment-concentratingserotoninvitellogenesis-stimulating

Similar Articles

Cited By