System-level analyses of keystone genes required for mammalian tooth development.

Outi Hallikas, Rishi Das Roy, Mona M Christensen, Elodie Renvoisé, Ana-Marija Sulic, Jukka Jernvall
Author Information
  1. Outi Hallikas: Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
  2. Rishi Das Roy: Institute of Biotechnology, University of Helsinki, Helsinki, Finland. ORCID
  3. Mona M Christensen: Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
  4. Elodie Renvoisé: Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
  5. Ana-Marija Sulic: Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
  6. Jukka Jernvall: Institute of Biotechnology, University of Helsinki, Helsinki, Finland. ORCID

Abstract

When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system-level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single-cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system-level dynamics. Single-cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ-level expression, progression genes show high cell-level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system-level principles of gene expression can be detected using phenotypically defined gene categories.

Keywords

References

  1. J Exp Zool B Mol Dev Evol. 2021 Jan;336(1):7-17 [PMID: 33128445]
  2. Trends Ecol Evol. 2018 Sep;33(9):689-700 [PMID: 30098801]
  3. Nat Commun. 2020 Sep 23;11(1):4816 [PMID: 32968047]
  4. Nucleic Acids Res. 2018 Jan 4;46(D1):D843-D850 [PMID: 29136208]
  5. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  6. Sci Rep. 2015 Sep 28;5:14444 [PMID: 26411391]
  7. Bioinformatics. 2008 Mar 15;24(6):759-67 [PMID: 18204055]
  8. Science. 2002 Jul 12;297(5579):249-52 [PMID: 12114626]
  9. Nature. 2012 Mar 07;483(7389):324-7 [PMID: 22398444]
  10. Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7 [PMID: 15256591]
  11. Eur J Oral Sci. 1998 Jan;106 Suppl 1:7-11 [PMID: 9541196]
  12. Dev Biol. 2015 Sep 15;405(2):328-39 [PMID: 26187198]
  13. Genome Biol. 2017 Feb 15;18(1):29 [PMID: 28202034]
  14. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  15. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  16. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  17. Nucleic Acids Res. 2005 Nov 10;33(20):e175 [PMID: 16284200]
  18. Nat Rev Genet. 2018 Jun;19(6):357-370 [PMID: 29626206]
  19. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  20. BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):80 [PMID: 28361673]
  21. Science. 2009 Feb 20;323(5917):1050-3 [PMID: 19229034]
  22. J Exp Zool B Mol Dev Evol. 2009 Jun 15;312B(4):320-42 [PMID: 19219933]
  23. Nature. 2016 Sep 22;537(7621):508-514 [PMID: 27626380]
  24. Brief Bioinform. 2018 Nov 29;: [PMID: 30496347]
  25. Development. 2012 Oct;139(19):3487-97 [PMID: 22949612]
  26. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  27. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  28. Nucleic Acids Res. 2005 Sep 12;33(16):5208-18 [PMID: 16157866]
  29. Curr Opin Genet Dev. 2009 Oct;19(5):504-10 [PMID: 19875280]
  30. PLoS Comput Biol. 2020 Dec 14;16(12):e1008436 [PMID: 33315865]
  31. Mech Dev. 2001 Feb;100(2):313-6 [PMID: 11165488]
  32. Nature. 2014 Aug 7;512(7512):44-8 [PMID: 25079326]
  33. Dev Biol. 1999 Dec 1;216(1):243-59 [PMID: 10588875]
  34. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  35. Bioinformatics. 2005 Aug 15;21(16):3439-40 [PMID: 16082012]

MeSH Term

Animals
Biological Evolution
Gene Expression Profiling
Gene Expression Regulation, Developmental
Odontogenesis
Single-Cell Analysis
Tooth
Up-Regulation

Word Cloud

Created with Highcharts 10.0.0genesexpressiongeneessentialdevelopmenttoothsystem-levelrequiredmousekeystoneRNAseqanalysesmolarshighlyprogressionnulldevelopmentalmutationssubtlephenotypedynamicsnormaldifferentcategoriesusingpatterningshowlevelssingle-cellalsodetecteddevelopingeventhoughcellshightranscriptexpressedcanmutationcausescompletearresttypicallyconsideredlifeYetcaseseffectsusedphenotypicseveritytoolexamineclassifymolarrangemodificationCollectivelycallTranscriptomeprofilingmicroarraystageelevatedresultreminiscentorganismsElevatedratsuggestingevolutionaryconservationSingle-cellrevealsizedomainmeasurednumbermaindriverorgan-levelcell-levelabundancesProgressionupregulatedwithinpathwayscontrastproportionsecretedligandsfewerreceptorsintracellularcomponentsOverallpatternsindividualconservedprinciplesphenotypicallydefinedSystem-levelmammalianabundancetranscriptomes

Similar Articles

Cited By