A novel spectrally selective fat saturation pulse design with robustness to B and B inhomogeneities: A demonstration on 3D T-weighted breast MRI at 3 T.

Feng Xu, Wenbo Li, Dapeng Liu, Dan Zhu, Michael Schär, Kelly Myers, Qin Qin
Author Information
  1. Feng Xu: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA. Electronic address: fxu6@jhmi.edu.
  2. Wenbo Li: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
  3. Dapeng Liu: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
  4. Dan Zhu: Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
  5. Michael Schär: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  6. Kelly Myers: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  7. Qin Qin: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

Abstract

PURPOSE: Spectrally selective fat saturation (FatSat) sequence is commonly used to suppress signal from adipose tissue. Conventional SINC-shaped pulses are sensitive to B off-resonance and B offset. Uniform fat saturation with large spatial coverage is especially challenging for the body and breast MRI. The aim of this study is to develop spectrally selective FatSat pulses that offer more immunity to B/B field inhomogeneities than SINC pulses and evaluate them in bilateral breast imaging at 3 T.
MATERIALS AND METHODS: Optimized composite pulses (OCP) were designed based on the optimal control theory with robustness to a targeted B/ B conditions. OCP pulses also allows flexible flip angles to meet different requirements. Comparisons with the vendor-provided SINC pulses were conducted by numerical simulation and in vivo scans using a 3D T-weighted (Tw) gradient-echo (GRE) sequence with coverage of the whole-breast.
RESULTS: Simulation revealed that OCP pulses yielded almost half of the transition band and much less sensitivity to B inhomogeneity compared to SINC pulses with B off-resonance within ±200 Hz and B scale error within ±0.3 (P < 0.001). Across five normal subjects, OCP FatSat pulses produced 25-41% lower residual fat signals (P < 0.05) with 27-36% less spatial variation (P < 0.05) than SINC.
CONCLUSION: In contrast to conventional SINC-shaped pulses, the newly designed OCP FatSat pulses mitigated challenges of wide range of B/ B field inhomogeneities and achieved more uniform fat suppression in bilateral breast Tw imaging at 3 T.

Keywords

References

  1. Magn Reson Med. 1998 Oct;40(4):505-10 [PMID: 9771566]
  2. Magn Reson Imaging. 1993;11(3):341-55 [PMID: 8505868]
  3. Magn Reson Med. 2014 Dec;72(6):1530-40 [PMID: 24338901]
  4. Radiology. 1986 Jun;159(3):783-6 [PMID: 3704157]
  5. Magn Reson Imaging. 2017 Dec;44:146-156 [PMID: 28890384]
  6. Magn Reson Med. 2006 Sep;56(3):572-84 [PMID: 16894578]
  7. Magn Reson Imaging. 1985;3(3):251-4 [PMID: 4079672]
  8. J Magn Reson Imaging. 2007 Mar;25(3):644-52 [PMID: 17326087]
  9. Radiology. 1985 Aug;156(2):441-4 [PMID: 4011907]
  10. J Magn Reson Imaging. 2011 Oct;34(4):842-51 [PMID: 21769987]
  11. Magn Reson Med. 2005 Sep;54(3):636-44 [PMID: 16092103]
  12. Radiology. 2011 Mar;258(3):749-59 [PMID: 21212366]
  13. NMR Biomed. 2011 Aug;24(7):784-90 [PMID: 21834002]
  14. Eur Radiol. 2014 Sep;24(9):2213-9 [PMID: 24792515]
  15. J Magn Reson Imaging. 2013 Oct;38(4):981-6 [PMID: 23172831]
  16. Magn Reson Imaging. 1993;11(3):385-93 [PMID: 8505872]
  17. Magn Reson Med. 2020 Oct;84(4):1909-1918 [PMID: 32173909]
  18. J Magn Reson. 2003 Jul;163(1):8-15 [PMID: 12852902]
  19. Magn Reson Med. 2012 Feb;67(2):464-9 [PMID: 21633968]
  20. Radiology. 2020 Jan;294(1):149-157 [PMID: 31714192]
  21. J Magn Reson Imaging. 1997 Nov-Dec;7(6):1002-15 [PMID: 9400843]
  22. Magn Reson Imaging. 2020 Nov;73:138-147 [PMID: 32860871]
  23. Magn Reson Med. 2020 Jul 8;: [PMID: 32643240]
  24. Jpn J Radiol. 2013 Sep;31(9):615-22 [PMID: 23793822]
  25. Magn Reson Med. 1991 Apr;18(2):371-83 [PMID: 2046518]
  26. Radiographics. 1999 Mar-Apr;19(2):373-82 [PMID: 10194785]
  27. MAGMA. 2015 Apr;28(2):185-94 [PMID: 25108702]
  28. J Magn Reson Imaging. 2014 Jan;39(1):195-202 [PMID: 23589344]
  29. Magn Reson Med. 2008 Nov;60(5):1122-34 [PMID: 18956464]
  30. J Magn Reson. 2008 Sep;194(1):58-66 [PMID: 18586540]
  31. J Magn Reson Imaging. 2006 Jan;23(1):87-91 [PMID: 16315211]
  32. J Magn Reson Imaging. 2015 Apr;41(4):992-9 [PMID: 24723508]
  33. Magn Reson Med. 2015 Oct;74(4):1050-6 [PMID: 25311332]
  34. Magn Reson Med. 2012 Nov;68(5):1517-26 [PMID: 22252850]
  35. Radiology. 1984 Oct;153(1):189-94 [PMID: 6089263]
  36. Magn Reson Med. 2011 Nov;66(5):1254-66 [PMID: 21523819]
  37. Radiol Med. 2017 Oct;122(10):731-742 [PMID: 28643295]
  38. J Magn Reson. 2009 Jul;199(1):30-40 [PMID: 19398359]
  39. Magn Reson Med. 2020 Nov;84(5):2512-2522 [PMID: 32406137]
  40. Magn Reson Imaging. 1994;12(8):1205-25 [PMID: 7854027]
  41. Radiology. 1994 Aug;192(2):555-61 [PMID: 8029431]
  42. Magn Reson Med. 2018 Apr;79(4):2014-2023 [PMID: 28799210]
  43. Phys Med Biol. 1985 Apr;30(4):341-4 [PMID: 4001160]
  44. J Magn Reson. 2004 Mar;167(1):68-74 [PMID: 14987600]
  45. J Lipid Res. 2008 Sep;49(9):2055-62 [PMID: 18509197]
  46. Magn Reson Med. 2020 Sep;84(3):1173-1183 [PMID: 32017173]
  47. J Magn Reson Imaging. 2012 May;35(5):1222-6 [PMID: 22282269]
  48. J Magn Reson Imaging. 2010 Jan;31(1):4-18 [PMID: 20027567]
  49. Magn Reson Med. 2018 Jun;79(6):3007-3017 [PMID: 29159947]
  50. Magn Reson Med. 2013 Mar 1;69(3):862-7 [PMID: 22556115]

Grants

  1. R01 HL138182/NHLBI NIH HHS
  2. R01 HL144751/NHLBI NIH HHS
  3. S10 OD021648/NIH HHS

MeSH Term

Adipose Tissue
Breast
Computer Simulation
Female
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Phantoms, Imaging

Word Cloud

Created with Highcharts 10.0.0pulsesBfatOCPselectivesaturationFatSatbreastSINCMRI3 TP < 0SpectrallysequenceSINC-shapedoff-resonancespatialcoveragespectrallyfieldinhomogeneitiesbilateralimagingdesignedcontrolrobustnessB/3DT-weightedTwlesswithin05suppressionpulseinsensitiveFatPURPOSE:commonlyusedsuppresssignaladiposetissueConventionalsensitiveoffsetUniformlargeespeciallychallengingbodyaimstudydevelopofferimmunityB/BevaluateMATERIALSANDMETHODS:OptimizedcompositebasedoptimaltheorytargetedconditionsalsoallowsflexibleflipanglesmeetdifferentrequirementsComparisonsvendor-providedconductednumericalsimulationvivoscansusinggradient-echoGREwhole-breastRESULTS:Simulationrevealedyieldedalmosthalftransitionbandmuchsensitivityinhomogeneitycompared±200 Hzscaleerror±03001Acrossfivenormalsubjectsproduced25-41%lowerresidualsignals27-36%variationCONCLUSION:contrastconventionalnewlymitigatedchallengeswiderangeachieveduniformnoveldesigninhomogeneities:demonstration01+BreastOptimalRF

Similar Articles

Cited By